Data, Data, Data: NEW FORMS, BIG VISION
At Viterbi School, our research can spark great things.
BOARD OF COUNCILORS

CHAIMAN
Dwight J. Baum
Private Investor

Dean K. Allan, BSEE ’57
Retired, Parsons Corporation

Gordon M. Anderson, BSEE ’54
Retired, Santa Fe International Corporation

Sonnny Astani, MSEE ’78
Astani Enterprises, Inc.

Wanda M. Austin, Ph.D. ’82
The Aerospace Corporation

William F. Ballhaus, Jr
Retired, The Aerospace Corporation

Ronald R. Barnes, BS ACCT ’76
Marin Foundation

Carol A. Bartz
Y manifested, Inc.

Gregg E. Brandow, BSCE ’67
Bendrind & Johnston, Inc.

Edgar Brower, BSEE ’59
Retired, Pacific Scientific

Simon (Xiaofan) Cao, MA-PHYS ’85, MSEE ’87, PhD-PHYS ’90
Venture Capitalist

Yang Ho Cho, MBA ’79
Korean ABS, Inc., USCE Trustee

David W. Choquette, SM’60, EN’64
Private Investor

Leo Chu
Hollywood Park Casino and Crystal Flom Brazil

Malcolm R. Currie
Retired, Hughes Aircraft Company, USCE Life Trustee

Kenneth C. Dahlberg, MSEE ’60
Science Applications International Corporation

John Deininger
J.D. Investments, Inc.

Feng Deng, MS CENG ’93
Northrop Grumman Corporation, USCE Life Trustee

Albert Dorman, MSEE ’62
AECOM

Daniel J. Epstein, BSEE ’62
Cordani Management Corporation, USCE Trustee

Alan J. Feiber, BSCE ’73, MSEE ’76
Southern California Edison

Hester Gill
M.C. Gill, BSCE ’77, Retired, M.C. Gill Corporation, Honorary USCE Trustee

Kenton Gregory, BSEE ’76, MD ’80
Providence St. Vincent Medical Center

Ming Jiohe, BSCE ’83, MSEE ’94
Cognis, Inc., USCE Trustee

Jen-Hun Huang
MTBA Corporation

Karl A. Jacob III, BME ’81, BS CSCI ’90
Covestro

Jay L. Koon, BSME ’60
Private Investor

Ken R. Klein, BS BME ’82
Wind River Systems, Inc., USCE Trustee

Marie L. Knowles, BSEE ’88, MSCIE ’79, MBA ’74
Retired, ARCO

David A. Lane, BSEE ’81
ONSET Ventures

Alexis C. Livatino
Northrup Grumman Corporation

Alfred E. Mann
Alfred Mann Foundation, USCE Life Trustee

Gordon S. Marshall, BS ENG ’46
Retired, Marshall Industries, USCE Life Trustee

Fariborz Masoff
Piccolo, LLC

Brian B. Min, BSEE ’96
Epinion Systems Solutions, Inc.

John Mork, BS ’70
Energy Corporation of America, USCE Trustee

Donald L. Paul
USC Energy Institute

Allan E. Puckett
Retired, Hughes Aircraft Company, USCE Life Trustee

F. Edward Reynolds, Jr., BSEE ’81, MSEE ’84, MBS ’86
The Raytheon Group

George E. Scalin, BSEE ’88
NASA-JPL, JPL Transportation

John E. Shen, BS ENG ’49
J.P. Shira Co., Inc.

Darlene Solomon
Agilent Technologies

Patrick Soon-Shiong
Absher Brokerage, LLC

Richard D. Stephens, BS NCSA ’74
The Boeing Company

Mark A. Stevens, BSEE ’81, BA ECON ’81, MSEE ’86
Seagate Capital, USCE Trustee

Parviz Teyebali, PhD, PHYS ’89
Carnegie, LLC

Andrew J. Viterbi, Ph.D., ED ’62
Viterbi Group, LLC, USCE Trustee

William Wang, BSEE ’86
VLSI

Warner M. Williams
Chevron North America Exploration and Production Company

Jeff J. Woodbury, BSEE ’83, MSCE ’90
ExonMobil Development Company

VUSC Viterbi School of Engineering

VISION 2.0
ENGINEERING: THE ENABLING DISCIPLINE OF OUR TIMES

FALL 2010
Dean
Yvonne C. Yengde
Viterbi School of Engineering

Chief Executive Officer
Christopher J. Goodyear

External Relations
Christopher J. Goodyear

Executive Director
Marketing and Communications
Laura Ochoa

Chair
Editor
Liliana Chu

Contributing Writers
Robert Bradford, Bob Calvert, Lenora Chu, Gloria Hayes, Vanessa Hsu, Eric Marklin, Doo Seo

Art Direction and Graphic Design
Lime Twig Group

Photography / Graphics
Phil Channing, Chuck Espinosa, Brian Mann, Jen Viterbi

Cover Art
Tim Bower

The vision that drove these accomplishments originated from the need to solidify our presence in the context of a rapidly changing global, contextual and economic landscape, and to lead the quest for new paradigms in engineering education and research.

This vision is encapsulated by the statement that we should aim to make the Viterbi School:

• First at USC
• A Leader in the Nation
• With Constantly Improving Quality, and Excellence in All Our Endeavors

As the university is moving into a new era, with new leadership, and as I have been humbly entrusted with another term to lead this remarkable school, the vision for our school is as clear as before. I am adding a re-focusing dimension:

• Advancing and Fulfiling the Promise of Engineering to Empower Society as the Enabling Discipline of Our Times—In What We Call Engineering+

Following this vision brings vistas of breathtaking views. We see an undergraduate educational experience enriched with innovation, entrepreneurship and communication skills, and enhanced with community and global outreach. We continue to pursue the fundamental discovery of new laws, materials, processes and devices in collaboration with the sciences. We are forging new paths in interdisciplinary research and scholarship in close partnerships with medicine and health sciences, policy, communications, social sciences and the arts.

We are hammering out solutions to vexing problems, such as the NSF I/UCRC Challenge, the promotion of which has been an unrelenting task of the Viterbi School along with its partners. And we are inculcating a generation of new professionals with the skills and tools to implement these transformations and be the catalysts of change.

In the fall of 2010, this vision is as clear as 2020.

Yvonne C. Yengde
Dean, Viterbi School of Engineering

We are forging new
paths in interdisciplinary research and scholarship in close partnerships with medicine and health sciences, policy, communications, social sciences and the arts.

Incoming freshman SAT scores have soared and the latest data for fall 2010 shows another 1% point increase. More than a third of all entering freshmen are women. The freshman return rate to engineering majors is now at an astounding 92 percent.

On the faculty front, the number of annual Ph.D. degrees awarded has increased by 15% in the last five years, with an increase of more than 60 percent in diversity hiring. More Hispanic and African-American faculty members.

And our faculty continue to collect distinctions at rapid rates. Six have been elected to the various national academies, 14 have received NSF Career awards, two have received Presidential Early Career (PECASE) awards, and three faculty female were singled out in MIT’s TR35 annual review. All these highs in research volume and research centers have demonstrated the research prowess of our faculty.

“We are forging new paths in interdisciplinary research and scholarship in close partnerships with medicine and health sciences, policy, communications, social sciences and the arts.”

Incoming freshman SAT scores have soared and the latest data for fall 2010 shows another 1% point increase. More than a third of all entering freshmen are women. The freshman return rate to engineering majors is now at an astounding 92 percent.

On the faculty front, the number of annual Ph.D. degrees awarded has increased by 15% in the last five years, with an increase of more than 60 percent in diversity hiring. More Hispanic and African-American faculty members.

And our faculty continue to collect distinctions at rapid rates. Six have been elected to the various national academies, 14 have received NSF Career awards, two have received Presidential Early Career (PECASE) awards, and three faculty female were singled out in MIT’s TR35 annual review. All these highs in research volume and research centers have demonstrated the research prowess of our faculty.
Exploring Deep Space? The Mariana Trench
NANO SCALE ENGINEERING PAVES THE WAY FOR EXTREME TEMPERATURE APPLICATIONS

All this begins with a little bit of tinkering with grains and grain boundaries. Hodge aims to change the size and shape of each grain to increase the numbers of interfaces that allow engineering to certain, desired properties.

The machine that makes her work possible is a $5.5 million behemoth called a Magnetron sputtering chamber, which sits in a laboratory at Ronald Tutor Hall.

“It’s a very sophisticated machine,” says AIME Department Chair Geoff Speckling. “Not many universities have something like this at the industrial-scale size.”

The chamber allows Hodge to create thin layers (coatings) through physical vapor deposition of almost any element in the periodic table. The layers can vary in thickness from one nanometer to hundreds of micrometers. “Non-by-nons,” says Hodge. “That’s how good our control is.”

The resulting material is tested for mechanical properties such as yield strength and hardness. And the results have been very promising.

Titan copper. After turning regular copper through Hodge’s process, the resulting material—still pure Cu—yields a strength of 1.000 Mega Pascals. That’s five times stronger than typical copper.

“We can actually change what Mother Nature made,” says Hodge. “Instead of being face-centered cubic copper, we can make it body-centered cubic.” Hodge’s group is also working with Tantalum (Ta) and Nickel (Ni).

The applications for her work are vast. Using high-temperature nanoscaled coatings in engines means that they’ll last longer, use less fuel and withstand extreme temperatures.

“He could also use these coatings for turbine blades, aerospace applications, or anything else that must withstand severe heat or severe cooling,” Hodge says. Imagine the possibilities. Better engines. Deep sea exploration. Journeys to outer space. And just maybe—Pants.”

To learn more about the USC Information Sciences Institute, visit www.isi.edu
Tackling Blowouts in L.A.’s Water Supply
IMPACTING POLICY WITH ENGINEERING EXPERTISE

A rush of well-publicized breaks in Southern California water mains disrupted communities and destroyed streets during the summer of 2009. Jean-Pierre Bardet, chair of the Sunny Astani Department of Civil and Environmental Engineering (CCEE), led the blue-ribbon panel tapped by the city of Los Angeles to discover the causes.

As director of the USC Center on Megacities, Bardet brought to the investigation a history of bringing together experts from all disciplines—including engineering, architecture, economics, policy and public health—to innovate for a better future for metropolises with more than 10 million people.

The water main breaks raised concerns from the media and the public about the safety of the city’s water distribution system. Why did they occur? Did the city’s new water rationing system play a role? Were old water pipelines being replaced in a timely manner? To find answers, the committee met with Los Angeles Department of Water and Power personnel, studied system characteristics such as pipe diameter, thickness and age, and drew comparisons with other systems in large urban areas, including San Diego, Washington, D.C., and New York.

The team analyzed years of historical information about the immense L.A. water system, which involves 7,200 miles of pipe delivering 200 billion gallons of water at cost of $1 billion per year. They examined the chemistry of the soil and seismic movements of the surrounding geologic area. They worked with Jet Propulsion Laboratory researchers to measure real-time stresses using satellite and ground sensors.

A conclusion began to emerge. The team found that the rationing policy—specifically, limiting lawn watering to two days a week—caused water pressure in the system dropped on certain days. This created stressful cycles of pressurization and depressurization for pipes.

The result for the pipes? Metal fatigue—the same phenomenon seen when someone breaks a cost hanger or paper clip by repeatedly bending it back and forth.

“The bottom line is, you want to create a more even usage, so you don’t have a sudden drop of water pressure at a given time of the day,” he told the L.A. Times and various TV news crews following the release of the report in February 2010. Bardet and his committee recommended an alternate, more gradual water conservation plan to help avoid future blowouts. And such a plan is now in effect. The committee’s work resulted in a computer model that portrays the LADWP’s distribution system in unprecedented detail, with the biographies and composition of virtually every section of pipe documented.

To learn more about the USC Center on Megacities, visit www.megacities.usc.edu

Mr. Meshkati Goes To Washington
REFLECTIONS FROM A YEAR AS A JEFFERSON SCIENCE FELLOW

This summer, industrial and nuclear safety expert Najm “Naj” Meshkati completed a year as a Jefferson Science Fellow. Run by the U.S. Department of State, that program called for Meshkati to serve as a Senior Science and Engineering Adviser for the Office of the Science and Technology Adviser to the Secretary of State. Established in partnership with the National Academies and the science, technology and engineering community in 2003, the Fellowship’s purpose is to create a platform by which science and engineering can inform foreign policy decisions. Meshkati, a professor of the Sunny Astani Department of Civil and Environmental Engineering and the Daniel J. Epstein Department of Industrial and Systems Engineering, offered this reflection on his experience.

Mr. Meshkati’s efforts in Washington, D.C., revolved around the development of science and engineering diplomacy initiatives for partnership creation, capacity building and conflict resolution, especially as such initiatives are needed for interacting with countries in the Middle East.

My work encompassed integrated technical and policy-based, systems-oriented frameworks to improve the safety and reliability of large-scale technological systems in the civil aviation, nuclear power, and upstream and downstream oil industries. It was not only a journey to Capitol Hill but also a global adventure.

I met with scholars, diplomats and policymakers in Athens, Paris, Bahrain, Cairo, Alexandria, Tunis and Stockholm over the last seven months.

Mr. Meshkati was selected to serve as a National Academy of Engineering/National Research Council panel investigating the BP Deepwater Horizon explosion and Gulf oil spill.

One of the most interesting experiences of my assignment: The opportunity to closely observe the making of a major thrust of the Obama administration’s foreign policy, following President Obama’s historic address to the Muslims of the world in Cairo on June 4, 2009, which he dubbed “the New Beginning,” the administration embarked on a series of initiatives geared toward the realization of meaningful collaborations in science and technology for developing new sources of energy, green jobs, digitized record cleaning water and new crops.

Now called the “Global Engagement,” they comprise a major U.S. foreign policy initiative that could eventually rival the Marshall Plan. As that 1947 program helped rebuild the broken countries of Europe following World War II, the Global Engagement initiative could also substantially rebuild badly damaged relations between the U.S. and Muslim majority countries, if it is formulated correctly and executed prudently.

Something else that impressed me was the direct, key role that young, enthusiastic staffers play in the administration’s policy formulation. Although they may not “make” final policy, they are surely the brains behind its framing and institutionalization. Many of my talented former USC students, especially engineering students who choose interdisciplinary paths, are certainly at least as remarkable as these staffers, if not more so. I come back to campus with a renewed interest in encouraging my future students to try seek such influential positions within departments of the executive branch in Washington, D.C. They can make a difference.

Throughout the year, I fell doubly proud of my Trojan connections—USC affiliations as both an engineering alumnus (B.S. EM’78 and Ph.D. IE’80) and a faculty member. During an important meeting last April at the headquarters of the League of Arab States in Cairo, the high-ranking host thanked me for my technical and diplomatic contributions, and also noted that “He is coming from one of the best universities in the world, the University of Southern California.”
Can a webcam system figure out whether you’re happy or angry, and adapt its reaction depending on your state of mind? Gérard Medioni of the Department of Computer Science is well on his way to determining the answers. The HP Labs Innovation Research program has selected Medioni to develop new and inexpensive interfaces for human-computer interaction.

“The technology we propose to develop is a real-time, efficient and generic facial expression recognition prototype from a basic webcam,” says Medioni’s research proposal. The new work will build on technology previously developed by Medioni’s lab and is composed of two modules. The first one estimates the 3D head pose and facial deformations, and the other classifies and describes expressions using a non-linear manifold learning process.

The existing technique is effective and can accurately recognize eight expressions—surprise, anger, joy, disgust, sadness, eyes blinking, left eye winking, and right eye winking. However, it requires prior 3D mapping of individual faces.

The new system aims to incorporate a temporal dimension in analyzing faces captured on video, and then using adaptive algorithms to fit them on the fly to a generic 3D model for real time frame rate imputation, says Medioni.

“Such a system should allow a user to experience a seamless immersive interaction, and will constitute a major step toward the development of new, reliable, fun and inexpensive interfaces for human computer interaction.”

M.C. Gill Commemorates His 100th Birthday

Viterbi leadership gathered at the California Club in August to celebrate centenarian Mernyn C. Gill, a Pasadena industrialist and longtime supporter of the Viterbi School. Gill, who graduated from USC in 1933 with a bachelor’s degree in chemical engineering, launched the M.C. Gill Corporation out of a rewind garage in 1945. He grew the company from a mom-and-pop mail order of composite wall panels into the world’s largest manufacturer of advanced composite materials, particularly refined plastics. In 1995, Gill endowed an academic chair at the engineering school for the study of advanced composite materials. In 2002, he endowed and named the Mernyn C. Gill Composites Center at USC. Both he and his wife Hester sit on the Viterbi School Board of Directors.

M.C. Gill (center, with L to R) wife Hester Gill, M.C. Gill professor Steven Nutt, Viterbi Dean Donna Toast, and Viterbi CEO of External Relations Christopher J. Støy
Guiding the CS Department
A DECORATED COMPUTER SCIENTIST BEGINS HIS 2ND YEAR AS CHAIR

Sheng-Hua Teng, with the backward blackboard where he does much of his brainstorming.

Last fall, Sheng-Hua Teng, the 2008 Godel Prize winner, came to USC to chair the Department of Computer Science (CS). Shortly after, he won the Fullbright Prize, one of the highest honors in applied mathematics given once every three years jointly by the American Mathematical Society and Mathematical Programming Society. He was also elected a fellow of ACM.

"I came to USC because its faculty contains pioneers in modern cryp- tography, software engineering, and computational neuroscience, as well as younger stars in computer graphics, natural language processing, network sciences, and robotics," says Teng. "The CS Department here is also unique in that it has more than 40 research faculty members from the world-renowned Information Sciences Institute (ISI)—a major player in the creation of the Internet—and from the Institute for Creative Technologies (ICT)."

It was a return to campus for Teng, who earned a master’s degree from USC in 1997 before going on to Carnegie Mellon University for his Ph.D. He brings to his alma mater a passion to elevate the CS Department as one of the world’s premier computer science programs.

"We need to focus not only on the strategic growth but also on the insti- tutional environment," says Teng. "This year we need a lot more than we had last year. The environment becomes that much more of an exciting place for our students and faculty to learn and create," says Teng of his vision about the department.

Part of this quest means making sure neither side of computer science—a discipline at the crossroads of science and engineering—is overlooked. "The science side tends to place emphasis on fundamental research and training, while the engineering side has more need for an immediate connection with applications and industrial practice," adds Teng.

Guiding the CS Department

addition to being a top scientist in the fields intersecting theoretical computer science, game and economic theory, and scientific computing, Teng, who has 19 patents, has also developed software for some of the most innovative companies in the business.

During his first year at USC, Teng guided the department in the successful recruit of Yan Lin, a prominent female faculty in the strategic area of data analysis and machine learning. With the assistance of his faculty leaders, Teng launched a monthly Ph.D. social and organized a CS research conference to build stronger connec- tions among students and faculty with varied research interests and between USC computing and its industrial and interdisciplinary partners.

"Teng also taught a required undergraduate class which launched a curriculum improvement effort. The course also paved the way for the first-ever successful nomination of a CS student for the Mellon Mays Undergraduate Fellowship, which aims to increase diversity.

One agenda going forward is work- ing toward faculty to build an "absolutely dominating at the national level" CS program at USC, and fostering concrete mechanisms to fully leverage and expand ISI and IGT’s expertise in areas such as natural language processing and digital graphics.

"My goal is to build a premier CS program so that we can continue to attract first-class scholars to USC and better place our students after they graduate, going not just to good jobs, but also to premier schools and to cite labs like Microsoft Research and Google."

"I came to USC because its faculty contains pioneers in modern cryptography, software engineering and computational neuroscience, as well as younger stars in computer graphics, natural language processing, network sciences and robotics."

Addition to being a top scientist in the fields

Two actors wrapped in motion sensors circle each other, as engineering researchers stand at the perimeter of a USC Viterbi School of Engineering laboratory, taking notes.

"It’s an unusual partnership between the artists and engineers, and a union the National Science Foundation (NSF) experts will have never seen before," says Teng of modeling human behavior. The NSF, under its Creative Information Technologies program, has awarded a three-year grant to faculty from the Viterbi School and the USC School of Theatre to study expressions of human behavior through improvisation and motion capture technology.

"The ultimate Holy Grail is to be able to build technologies to mimic aspects of human behavior," says Shri Narayanan, the Andrew J. Viterbi Professor of Engineering and professor of electrical engineering and computer science.

"We are interested in using advanced technologies, scientists could build devices to help autistic children, create advanced means of sharing human speech and visual behavior, and perhaps even quantify humor."

"The application is limited, but the fundamental nature of the issue we’re addressing—understanding human behavior,” says Shri Narayanan, a professor in the USC School of Theatre and Narayanan’s co-investigator on the project.

Narayanan and Camische seek to collect digital representations of human emotion and behavior, one bit at a time. Drawing upon acting students, Narayanan and Camische have engineered the collection of hundreds of sequences for analysis and created a database they call the USC CreativeIT Database.

"It’s humongous,” Narayanan explains.

"What can we predict from these measurements? Can we develop a mathematics way of explaining patterns in human behavior?"

On one particular spring day, Camische supervises an improvisation exercise with two actors. Each gets exactly one action verb and one phrase they’re allowed to utter to achieve opposing objectives.

"Our hope is that by using these techniques, the sky’s the limit on physical interaction and expression. By controlling certain elements, the researchers can record data for the variables that spring from manipulating expressive voice and body.

"William reach for Rose’s arm. Will Rose eventually get frustrated and raise her voice? The conflict is easy to see, but how their interaction will play out is in the real question.

"Meanwhile, Narayanan monitors a sophisticated motion capture (mocap) system, which collects data from tiny sensors embedded in the actors’ black spanner mates’ outfits.

"The resulting motion capture images make possible an intensely close analysis of what happens from moment to moment in the rehearsal hall," says Camische. "It exposes the bones of the actors’ interaction.

"The mocap technology is that same as that used on the sets of films such as Avatar and Star Wars. But the purpose is different.

"Perhaps virtual humans or robots can eventually be designed to improve upon themselves," says Narayanan. "Not just deciding whether to do it—but how to do it, also."

Other potential applications span a number of domains that relate to behavior. They include addiction treat- ment, cognitive and behavioral therapy, customer care in business settings and global security applications where socio-cultural behaviors come into play.

In the first year the professors used scenes from Shakespeare and Chekhov to dress out the actors’ improvisation. Next year, the researchers plan to use real life scenarios, such as how humans behave after working for 90 minutes in line at the DMV.

"I came to USC because its faculty contains pioneers in modern cryptography, software engineering and computational neuroscience, as well as younger stars in computer graphics, natural language processing, network sciences and robotics."
Faculty Accolades

VITERBI PROFESSORIAL AWARDS AND ACHIEVEMENTS

Murali Annavaram
Andrea Armani
Ing-Ershaghi
Hooman Ioannou
Michael Kassner

Murali Annavaram of the Ming Hsieh Department of Electrical Engineering (EE) joins the school’s roster of distinguished National Science Foundation CAREER Award winners. This funding will allow his team to answer fundamental challenges to processor reliability.

Andrea Armani has won a Presidential Early Career Award, the U.S. government’s highest honor for scientists and engineers beginning their independent careers. Armani, of the Mark Family Department of Chemical Engineering and Materials Science (Chem/MS) and the Fluor Early Career Chair in Engineering, also won a 2011 NIH Director’s New Innovator Award for her work in developing “ultrasensitive nano-devices for optical communications, solar energy and materials.”

Her work is integral to developing faster communications systems and improving technology to capture solar energy.

Povinelli joined the Viterbi School in fall 2008. She received her Ph.D. in physics in 2004 from MIT and completed her postdoctoral work at Stanford University. She currently studies in the Women in Science and Engineering (WISE) Junior Gabian Chair and has won many awards, including an Army Young Investigator Award and a Presidential Early Career Award.

She is the third Viterbi professor to be named to the TR35 in the last two years; Andrea Armani and Eliy Meng were named to the 2009 class. Other previous winners include such world-changing innovators as Jerry Yang of Yahoo!, Google co-founder Larry Page, and Linus Torvalds of Linux fame.

Michael Kassner, Shlomo Tanel of the Department of Electrical Engineering (EE) for his Excellence for his Contributions to the Field of Digital Electronics, was named a Fellow of the American Association for the Advancement of Science, Kassner, of the Department of Aerospace and Mechanical Engineering, was named for his leadership and research in the mechanical behavior of materials. Narayanan, who holds the Viterbi Professorship in Engineering, was awarded for his work in developing “ultrasensitive nanodevices for epigenetic investigations.”

Iraq Ershaghi, the Onor B. Milligan Chair of Petroleum Engineering (Chem/MS), has joined the John Franklin Carl Award from the Society of Petroleum Engineers. A highly sought-after expert following the Deepwater Horizon explosion and Gulf oil spill this spring, Ershaghi was selected for his work in petroleum development and recovery.

Petros Ioannou of EE was elected a Fellow of the Institution of Engineering and Technology (IET) in recognition of his work in control and transportation systems. A pioneer in “adaptive cruise control” systems, Ioannou also received the IEEE Hovis Medal for Achievement in Control.

C. C. Jay Kuo of EE was named 2010 Electronic Imaging Scientist of the Year for his contributions to the field of electronic imaging via research, publications and service.

Maja Matarić was featured as one of U.S. News & World Report’s 50 Brightest Minds.

Gerald Nadler, BM Chair Emeritus in Engineering Management (EE), received one of only two USC 2010 Faculty Lifetime Achievement awards presented at USC’s 29th Annual Academic Honors Convocation. Nadler, an interdisciplinary systems planning expert and technology literacy advocate, is honored for his many “contributions to the college, the professorship and the community.”

Gerard Medioni of CS and Alan Willner of EE have won 2010 HP Labs Innovation Research grants. Medioni and Willner’s projects will be among those of only 52 universities to receive funding from nearly 450 submissions across 36 countries. Medioni’s grant will support his “Real-Time Face Tracking and Expression Recognition from a Video” project, and Willner’s award will continue to fund his work with modern data centers.

Najmedin “Najm” Meshkat was selected to participate on a federal advisory panel on the Deepwater Horizon explosion and Gulf of Mexico oil spill. Najm, of the Sony Asahi Department of Civil and Environmental Engineering and the Daniel J. Epstein Department of Industrial and Systems Engineering (ISE), is an authority on aviation, industrial and nuclear safety.

Bhaskar Krishnamachari and C. C. Jay Kuo of EE were named Fellows of the American Association for the Advancement of Science, Kassner, of the Department of Aerospace and Mechanical Engineering, was named for his contributions to the field of electronic imaging via research, publications and service.

Alichino Nakano of CS was named a Fellow of the American Physical Society. Nakano, who also holds appointments in physics and astronomy, was elected during a highly competitive process by which no more than one half of one percent of the society membership each year is recognized by their peers for elevation to Fellow status.

Aristides Requicha, the Gordon S. Marshall Professor of Computer Science and also of EE, was invited to serve a two-year term as a distinguished lecturer of the IEEE Nanotechnology Council. Distinguished lecturers are selected based on their contributions to nanotechnology and their international reputation.

Koping “Kirk” Shung, of the Department of Biomedical Engineering and an expert in the field of medical ultrasound, received the Joseph H. Holmes Pioneer Award from the American Institute of Ultrasound in Medicine. The award is given for contributions to the growth and development of diagnostic ultrasound.

Millind Tambe of CS and ISE won the 2010 Homeland Security Award for Border and Transportation Security from the Christopher Columbus Fellowship Foundation. The award recognizes the team’s ARKOR, IRS and GUARDS multi-agent security systems, which are in use at LAX and several other gateways. With Carl Kesselman of ISE, Tambe is also an inaugural recipient of the Viterbi School’s Award for Undergraduate Research.

Alan Willner was elected an International Fellow of the United Kingdom’s Royal Academy of Engineering. Willner of EE was one of only five academics across the nation voted into the academy. He was elected for his work in optical communications.
Aiding People with Developmental Disabilities
VITERBI SCHOOL UNDERGRADS BUILD DEVICES TO FILL REAL NEEDS

The work grew out of collaboration between David Wiczyński, a professor of computer science, and Barbara Wheeler, a professor of the Keck School of Medicine of USC and associate director of the USC University Center for Excellence in Developmental Disabilities at Children’s Hospital Los Angeles. Wiczyński’s students first learned from Wheeler that the developmentally disabled may experience problems with comprehension, memory, problem-solving and communication. They might also have trouble sequencing steps in a complex task or evaluating potentially dangerous people and situations.

Then, at AbilityFirst, which trains and emploes people with developmental disabilities, the students observed and interacted with disabled individuals to better understand their needs.

“We talked about many communities needing easy-to-use devices to live more independently, so we had to elaborate, to do routine tasks such as knowing which bus to take,” recalls Lisa McDonald, director of Business and Employment Services at AbilityFirst.

With the needs they had observed in mind, the students went off to the drawing board. One student group’s weeks of intensive work resulted in a mobile device designed to help clients use public transportation to get to and from their jobs safely and on time.

The device provides prompts at every juncture where a person’s route might change—literally at every turn—and suggests corrective actions should the user get lost. The device is also outfitted with a panic button and a voice-synthesizer, which enables bystanders to be notified help by broadcasting, for example: “Excuse me, could you help me get to Orchard and Adams?”

A second group chose to focus their work on facilitating more independent shopping activity by people such as Sarah, a 25-year-old woman with Down’s Syndrome who lives with her family.

The students created a navigation/talking system that featured an automatic, annotated shopping list, as well as an application that downloads maps of a specific store (in this case, a Trader Joe’s).

The device identified the location of the specific items sought by Sarah, sorted the list by zones, and presented it in a logical navigational pattern for Sarah to follow. The application keeps a record of successes and errors for assistance and intervention when needed.

Wiczyński invited engineering leadership and disability experts to attend all student presentations in order to provide feedback in the development process.

“Everyone in the disability community who saw the work was excited,” says Wiczyński. “Our USC engineering students had produced a design that was in concert with needs in the field of disability.”

Several students hope to find a way to produce and market a variation of the devices they developed in the class.

One mobile creation helps people navigate public transportation. Another device downloads maps of local stores and creates ideal routes based on items on a shopping list. Both are designed to bolster the independence of people with developmental disabilities. They are the results of efforts over two semesters by two Viterbi School computer science student teams who participated in this year’s Senior Design Capstone Projects.

The X PRIZE Foundation—the nonprofit organization that nurtures big prize-money contests to encourage talented researchers to tackle big problems—launched a laboratory in 2009 at the University of Southern California. The Foundation aims to bring about radical breakthroughs for the benefit of humanity by incentivizing teams and individuals to tackle global challenges in the sciences, environment, education, global development and many other areas.

Developing technology around solar energy to make life better was the focus of the new USC lab, which launched a spring 2010 course: Engineering 401X around the task. The goal was to create specifications for new potential X PRIZE in the solar energy area to present to judges for consideration.

The co-directors of the effort were Jonathan Lasch, director of the Alfred E. Mann Institute, and Gene Miller, director of the Lloyd Greif Center for Entrepreneurial Studies in the USC Marshall School of Business. The lab’s 16 students came from both the Viterbi and Marshall schools.

The students attended guest lectures about all aspects of solar, from technology to marketing. They then explored background technology and recommended ways to market the contest in discussion groups of eight.

The students’ proposals focused on giving citizens of the African nation of Malawi access to nighttime power (Almost 95 percent live off the power grid). The ideal solar device should be cheap, require no special tools or skills to install, and provide enough power to light a lantern.

Megayawness in Los Angeles. This second proposal involved a gigantic solar system with enough power to power the Orange Line of the Los Angeles mass transit system, day and night.

The next step involves seeking companies willing to put up cash to reward research success in solving solar energy challenges. In the past, X PRIZE sponsors have included Google for a lunar lander contest, and Progressive Insurance, for development of a next-generation car.

Eileen Bartholomeu, senior director of prize development for the X PRIZE Foundation, said the organization was “impressed with the students’ enthusiasm and the caliber of their work this semester on solar energy.”

Viterbi Dean Yannis C. Yortsos says the X PRIZE effort “encourages precisely the qualities we are trying to develop in our students, including the right blend between technology and entrepreneurship.”

The X PRIZE mission began in 1999 when Dr. Peter H. Diamandis, inspired by the story of the Ongg Prize that Charles Lindbergh won in 1927 by flying across the Atlantic, established the Foundation to encourage and promote contests similar to the one that spurred the Spirit of St. Louis flight.
Last spring, Viterbi School Dean Yannis Yoros concluded his series on sustainable energy with a panel lecture and a student presentation of a project that examined the viability of powering the state of Hawaii completely with renewable energies. Yoros described the four-part lecture series to imbue students with a comprehensive understanding of the real-world challenges to using renewable energies to meet our power needs—using quantitative reasoning. The series was delivered inside the curriculum to about 50 selected Viterbi undergraduates from all majors.

“Our engineering students—and future leaders—must be able to speak of sustainability challenges with in-depth knowledge and ease,” says Yoros, whose work on energy has informed the curriculum.

“Such a foundation is essential to helping our global society be able to address population growth with finite resources and the need for an increasing economic output in a way that’s sustainable,” he says.

The sustainability series focused on the potential of renewable energy sources, mostly based on solar (first-hand), such as using photovoltaics or biomass second-hand, such as wind; and third-hand, such as wave), but also those based on nuclear. A key issue related to solar-energy-based sources is the real estate, namely “watts per square meter.”

For forging Global Engineering Education / USC and Peking University collaborate for IPDUM class

The Chinese undergraduate students and their USC counterparts from the Viterbi and Marshall Schools sat in rows of four, facing each other with backs straight and faces attentive.

Nothing less than the Pacific Ocean, a 6-hour time difference and a video-conference connection separated them. Meanwhile, Viterbi School Professor Stephen Lu’s voice broadcast maxims regarding the global economies and innovation opportunities of globalization.

“What’s really behind the subprime mortgage crisis?” asked Lu, who is the David Packard Chair in Manufacturing Engineering and a professor of Aerospace and Mechanical Engineering.

“Unwinding of credit. Traditional economic theory breaks down and doing business-as-usual will get terribly wrong.”

24 student faces registered agreement from two classrooms on the USC and Peking University campuses, 6,000 miles apart.

In a groundbreaking exercise combining both the international and virtual, Lu this spring launched the inaugural course of the 4-Podium program, an experimental, cooperative global innovation education program between USC and the prestigious Chinese University, Peking University (PKU).

“Podium is the next step on our vision for Technology-Enhanced Access to the Classroom,” says Viterbi Dean Yannis Yoros.

For the three-credit class, Lu and his counterparts at PKU, Dean Shiyi Chen and Prof. Jumpei Tan, brought together a banded group of 12 USC-Viterbi and Marshall students and 12 PKU students for a 23-week course in “Principles and Practice of Global Innovation.”

The semester culminated with a four-week on-site collaborative team project session at the PKU campus in Beijing.

The i-Podium concept is simple: Students from different cultures can learn as much from each other as from the course instructor. And cross-cultural education is important in teaching future leaders emerging science-tech subjects.

Lu and Tian designed the course so that the PKU and USC students could participate in live interaction in class lectures in real time, hold online discussions and brainstorm online, offline and the face-to-face. The course subject matter leverages the idea of cultural diversity inspiring technological innovation for the global markets.

Lu said the debris, broody and stuff at USC and PKU, as well as support from the Distance Education Network made the course possible. He also thanked an anonymous donor, whose generous support enables students from two top universities in USA and China to work with, and from, each other interactively and collaboratively without leaving home.

As the donor commented, this is indeed the true spirit of the learner-centered education paradigm and a new chapter of global education in the 21st century.

VITIERRY SCHOOL OF ENGINEERING

VITTERI AIMS TO WIDEN PIPELINE FOR PH.D. RECRUITING

Realizing that it’s the students that help comprise a top-notch research and teaching institution, the Viterbi School Dean launched its inaugural Engineering Achievers (REACH) event on campus this fall. REACH invites junior, senior and recently-graduated national high achievers from groups historically underrepresented in engineering to visit campus for a three-day, all-expense-paid doctoral program preview.

They met with faculty and current students, explored research opportunities and learned more about Viterbi doctoral programs. They also toured campus, attended special workshops, and learned more about the graduate application and admissions process.

“Bringing talented students to campus to visit with faculty and current students is the most effective way for them to discover all that USC has to offer,” says Marilyn Berté, Associate Dean for Doctoral Programs.

Monitoring events encourage Viterbi Ph.D. students and postdocs to pursue careers in academia and research after graduation.

The event comes on the tails of continuing success in Ph.D. recruitment. Quality and diversity indicators are up this year over last in nearly all categories including GPA, GRE scores and fellowship accepted by women and underrepresented minorities.

More specifically, the Viterbi School has more than doubled the number of Ph.D. fellowships accepted by women, and nearly doubled acceptances from underrepresented minority students (African American, Hispanic American, and Native American).

“Viterbi is the first choice by top students over many of our competitor institutions,” says Senior Associate Dean of Engineering Timothy Robinson, who is also a professor of the Ming Hsieh Department of Electrical Engineering.

The Chinese undergraduate students and their USC counterparts from the Viterbi and Marshall Schools sat in rows of four, facing each other with backs straight and faces attentive.

Nothing less than the Pacific Ocean, a 6-hour time difference and a video-conference connection separated them. Meanwhile, Viterbi School Professor Stephen Lu’s voice broadcast maxims regarding the global economies and innovation opportunities of globalization.

“What’s really behind the subprime mortgage crisis?” asked Lu, who is the David Packard Chair in Manufacturing Engineering and a professor of Aerospace and Mechanical Engineering.

“Unwinding of credit. Traditional economic theory breaks down and doing business-as-usual will get terribly wrong.”

24 student faces registered agreement from two classrooms on the USC and Peking University campuses, 6,000 miles apart.

In a groundbreaking exercise combining both the international and virtual, Lu this spring launched the inaugural course of the 4-Podium program, an experimental, cooperative global innovation education program between USC and the prestigious Chinese University, Peking University (PKU).

“Podium is the next step on our vision for Technology-Enhanced Access to the Classroom,” says Viterbi Dean Yannis Yoros.

For the three-credit class, Lu and his counterparts at PKU, Dean Shiyi Chen and Prof. Jumpei Tan, brought together a banded group of 12 USC-Viterbi and Marshall students and 12 PKU students for a 23-week course in “Principles and Practice of Global Innovation.”

The semester culminated with a four-week on-site collaborative team project session at the PKU campus in Beijing.

The i-Podium concept is simple: Students from different cultures can learn as much from each other as from the course instructor. And cross-cultural education is important in teaching future leaders emerging science-tech subjects.

Lu and Tian designed the course so that the PKU and USC students could participate in live interaction in class lectures in real time, hold online discussions and brainstorm online, offline and the face-to-face. The course subject matter leverages the idea of cultural diversity inspiring technological innovation for the global markets.

Lu said the debris, broody and stuff at USC and PKU, as well as support from the Distance Education Network made the course possible. He also thanked an anonymous donor, whose generous support enables students from two top universities in USA and China to work with, and from, each other interactively and collaboratively without leaving home.

As the donor commented, this is indeed the true spirit of the learner-centered education paradigm and a new chapter of global education in the 21st century.
Intelligence: The Eyes Have It
16 MILLION PROJECT AIMED AT A CAMERA THAT CAN PROCESS AND RECORD

By Eric Mosto

Five years ago, the Viterbi School’s Laurent Itti, working with a colleague at UC Irvine, building on years of previous work, published a groundbreaking paper on how humans see the world.

Today, Itti, an associate professor of the Department of Computer Science, is heading a $16 million project attempting to teach machines to see the world in the way human do.

Itti is building a visual system from the ground up, creating a prototype intelligent eye. The insights that he’ll draw from his research may drive development of new tools to help diagnose human problems in thought and perception.

Itti’s new project, funded by the Defense Advanced Research Projects Agency, builds on his previous effort called Neovision, which aimed for similarly lofty goals. However, Neovision relied on existing software systems not completely compatible with the neural systems Itti has discovered are critical to enabling cameras to pick out what is potentially important in images.

Itti also develops a system that will require human operators to peer continually at screens to make sense of what they see. Because existing sensors lack the intelligence to parse and summarize the data they collect, information overload often results.

“Our goal is to create intelligent general-purpose cognitive vision sensors inspired from the primate brain, to alleviate the limitations of such human-based analysis,” says Itti. In other words, he’d like to create a system that needs no human intervention.

Itti plans to design the software and hardware needed to create a “neuromorphic visual system for intelligent unmanned sensors” to make visual surveillance systems smarter. It will look out novel and important details in what their cameras record.

This is a formidable undertaking. A camera simply records patterns of light and darkness, and varying color. By contrast, the human visual system has evolved to seek out the specific visual signals critical to a creature’s survival, or “possible threats and opportunities,” as Itti characterized them in his earlier paper.

This involves complex circuits in the retina, where the outputs from light detector cells are processed to give rise to twelve different types of visual images of the world. Complex neural circuits in visual cortex and deep brain mass, including the superior colliculus, further process the images, which also drives eye movements to focus on specific parts of the image.

The plan is to model a complex interactive system to be able to understand the exact messages transmitted from the retina to cortex and further to the colliculus, and how the brain cells understand them. It will then build parallel transducers, using the same perception algorithms, into working silicon systems.

Working with researchers, a core team of engineers, PhD students and postdocs, Itti plans to create a whole series of prototypes, complete with hardware devices at a rate of one every six months. The work will comprise an ongoing back-end forth with researchers who will continue to refine understanding of how living eyes work.

Viterbi Dean Yannis Yortsos said the school was exceptionally well-equipped to support the research.

“We have state-of-the-art facilities for development of electronic and mechanical breadboards, boards and prototypes,” says Yortsos, “including a machine shop that provides precision machining capabilities from a highly trained staff.”

For this project, Itti is partnering with researchers at UC Berkeley, Caltech, MIT, Queen’s University, Brown University, Arizona State University and Penn State University, along with a company, Imagine, that specializes in the field.

In addition to the work on artificial eyes, Itti is continuing to pursue basic research on natural ones. By studying slight variations in the reactions of eyes of different humans to the same stimulus, Itti believes, it may be possible to distinguish by supposing human attention or vision information processing problems. This comprises a medical vision of the old idea that “the eyes are a window to the soul.”

Appraisal for public release by GOVST. Distributed Exclusively.

Will T-Shirts Soon Power Cell Phones?

GRAPHENE ORGANIC PHOTOVOLTAICS MAY PAVE THE WAY

by Bob Melico

A University of Southern California team has produced flexible transparent carbon atom films that the researchers say have great potential for a new breed of solar cells.

“Organic photovoltaic (OPV) cells have been proposed as a means to achieve low cost energy due to their ease of manufacture, light weight and compatibility with flexible substrates,” writes Chongwu Zhou, a professor of electrical engineering in the USC Viterbi School of Engineering, in a paper recently published in the journal ACS Nano.

The technique described in the article describes progress toward a novel OPV cell design that has significant advantages, particularly in the area of physical flexibility.

A critical aspect of any OPV photo-electronic device is a transparent conductive electrode through which light can couple with active materials to create electricity. The new work indicates that graphene, a highly conductive and highly transparent form of carbon made up of atoms-thick sheets of carbon atoms, has high potential to fill this role.

While graphene’s existence has been known for decades, it has only been studied extensively since 2004 because of the difficulty of manufacturing it in high quality and in quantity. The Zhou lab reported the large-scale production of graphene films by chemical vapor deposition (CVD) three years ago. In this process, the USC engineering team creates ultra-thin graphene sheets by first depositing carbon atoms in the form of graphene films on a nickel plate from methane gas.

Then they lay down a protective layer of thermo plastic over the graphene layer, and dissolve the nickel underneath in an acid bath. In the final steps they attach the plastic-protected graphene to a very flexible polymer sheet, which can then be incorporated into an OPV cell.

The USC team has produced graphene/polymer sheets ranging in sizes up to 150 square centimeters that in turn can be used to create dense arrays of flexible OPV cells, which convert solar radiation to electricity.

One drawback? They’re not as efficient as silicon cells, which generate 14 watts of electricity per square meter for every 1000 watts of sunlight, says Lewis Gomez-Diaz, a doctoral student and a member of the team that built the graphene OPVs.

“Organic solar cells are less efficient; their conversion rate for that one thousand watts of sunlight would be only 1.3 watts,” he says.

But what graphene OPVs lack in efficiency, they can potentially make up for in lower price and greater physical flexibility.

By covering extensive areas with inexpensive solar cells, says Gomez-Diaz, it may be possible to generate enough power to run printing presses. Such cells could even be made into fabric and worn as power-generating clothing or hung as curtains.

“Organic photovoltaic (OPV) cells have been proposed as a means to achieve low cost energy due to their ease of manufacture, light weight and compatibility with flexible substrates.”

At the very least, graphene OPVs would be major advance in at least one crucial area over a rival OPV designs based on Indium-Tin-Oxide (ITO). In the USC team’s tests, ITO cells failed at a very small angle of bending, while the graphene-based cells remained operational after repeated bending at much larger stress angles.

Zhou and the other researchers on the USC team—which included Yi Zhang, Cody W. Schlenker, Konungmin Ryu, and Mark E. Thompson in addition to Gomez-Diaz—are excited by the potential for this technology.

Their paper concludes that their approach constitutes a significant advance toward the production of transparent conductive electrodes in solar cells in the criteria of “abundance, low cost, conductivity, flexibility, electrochemical film compatibility and flexibility.”
A Doctor in Your Pocket
DELIVERING PERSONALIZED HEALTH CARE THROUGH YOUR CELL PHONE
by Leana Cha

Imagine getting real-time feedback from a doctor about your eating and exercise habits. Getting prescriptions personalized to your height, weight and lifestyle habits. Now envision having all this information streamed into your pocket—into your cell phone.

Researchers from the Viterbi School, in collaboration with domain experts at the Keck School of Medicine of USC, have developed a mobile technology platform for collecting, analyzing and sharing biometric data about an individual’s physical, physiological and, potentially, their emotional state.

“Cell phones used to be just voice communication devices, then they morphed into data communication devices, and now into entertainment devices,” says Mathur Annemaram, a professor of the Ming Hsieh Department of Electrical Engineering.

“The next incarnation in this rapid progression is personalized avatars. As avatars these devices know where we are, who we are, and what we are and eventually deliver value based on user’s context.”

“The Viterbi team’s ultimate goal? Enabling evidence-driven health care by developing systems and interventions that are completely personalized.

They imagine a world in which health care originates and evolves with the patient, providing real-time context and ‘just-in-time’ intervention and care, notes Shir Narayanan, a professor of electrical engineering.

There is overwhelming evidence that a “one-size-fits-all” approach to health care can be ineffective and even potentially dangerous. Subtle and non-obvious physiological differences—which can vary dramatically within a single person’s body at different times of day—can require substantially different doses of medications or even surgical procedures.

For example, a diabetic’s blood sugar level before and after a meal can vary dramatically. The most effective treatment approach requires more than just a blood sugar check to determine whether insulin is needed.

The technical foundation for the team’s work is the KNOWME Network, a suite of wearable, wireless sensors that send streaming data to mobile phones.

The mobile devices collect, store and transmit data from the sensors to a secure web server. The data might include: when you last ate or how much you are physically exercising yourself. It can note your current blood pressure, blood sugar levels, electrocardiograph signals or gaitonomic skin responses. It can pinpoint your geographic location by GPS—should an emergency intervention be needed.

Health professionals can monitor and analyze the information, and deliver real-time feedback through the phone display, text messaging, imaging and voice prompts.

Right now, KNOWME can text you reminders to give yourself a shot. In the future, KNOWME might direct an implanted insulin delivery system to automatically increase delivery levels.

“It’s not forbidden to think that the network might one day run complex algorithms that can identify irregular heartbeats, detect an elder slip-and-fall, or even determine our emotional state,” says Gaurav Sukhatme, a professor of computer science specializing in robotics and sensing.

One continuing challenge? Mobile phone batteries were not designed to support 24-hour biometric signal processing with significant Bluetooth communications.

“We’re using the phone in new ways, so we must design new algorithms and new ways of processing signals that use less energy,” says Ursula Mitra, an electrical engineering professor specializing in wireless communications.

The team has the potential to consider patients with Parkinson’s disease, diabetes, movement disorders, cardiac abnormalities, autism, sleep apnea, geriatric health and post-traumatic stress disorder.

With Donna Spruijt-Metz of Keck, the Viterbi team has outlined teenage test subjects with sensors and Nokia 65 mobile units in an ongoing pediatric obesity study.

“The teenagers are fascinated by their own data,” says Mitra. “As one youth put it, the experience was like having a doctor in your pocket.”

Spotlight: Ted Berger
A PIONEER IN NEUROENGINEERING

One of his biomedical engineering graduate students once said that since meeting Ted Berger, “Every following moment has been an ‘aha moment for me.’”

That student is not alone. Over a three-decade career as a biomedical engineering professor and decorated scientist, Berger has not only inspired many young students but also made groundbreaking contributions to the field of neuroengineering.

Consider just one freshly published in his vast portfolio—one that might have implications for people affected by strokes, epilepsy or Alzheimer’s disease.

In this effort, the Viterbi professor of biomedical engineering is leading a team of USC scientists to design and build an implant computer chip that could restore mental function in damaged or diseased brains.

By extending principles of neural encoding learned from developing the “cognitive implant” computer chip, Berger also has developed pattern recognition systems that perform automated identification of garnashes, footsteps, fence climbing and other events linked to security.

This software is now used by the military and police protecting vital assets and in fighting inner city crime.

Recently he began working with two Viterbi School students to investigate how the brain’s non-neuron parts, specifically astrocytes, contribute to brain function. (The students won a $100,000 Qualcomm project grant.)

The potential payoff is gigantic, says Berger, who is also Director of the USC Center for Neural Engineering and the David Packard Professor of Engineering.

If we begin to factor in astrocytes, it’s going to completely change our understanding of how synaptic transmission works and it will change our understanding of how drugs work in the brain.”

Ted Berger in his laboratory with a “conformal multi-electrode array system” designed to function as an interface between a living slice of rat brain tissue (shown on the video monitor) and microchip electronics (not shown). Such “neuron-silicon interfaces” are allowing biometric microelectrodes to connect directly with the brain, and enabling them to serve as neural prostheses for the damaged brain.

Viterbi Professor Murali Annemaram (in grey blazer), flanked by KNOWME graduate students (L to R) Kj Ming Li, Sarjanw Lee and Nareshravan Valshavangh
Understanding Cancer By Tackling Its Triggers

NIH TAPS VITERBI PROFESSOR TO DEVELOP TECHNIQUE TO STUDY DNA

by Lorna Ciba

Imagine the day a machine can draw your blood, screen it for genetic mutations and chemical variations that can cause cancer, and pop out a drug tailor-made for your DNA. That hypothetical drug would target—and fix—the point irregularities which have accumulated over time that can lead to the formation of tumors—and cancer.

The National Institutes of Health has tapped Andrea Armani to develop a key instrument that takes researchers a step closer to realizing this vision.

“Personalized cancer drug delivery? Depending on the approach, it could be as soon as 10 to 15 years away,” says Armani, an assistant professor of the Mork Family Department of Chemical Engineering and Materials Science.

Armani has received the NIH’s 2008 New Innovator Award, which recognizes a select group of researchers with “exceptional creativity” and bold approaches that “have the potential to produce a major impact on broad, important problems in biomedical and behavioral research.”

The award amounts to a $2.3 million research grant over five years to investigate epigenetics, the study of changes in DNA which are associated with cancer.

Analysis of these DNA changes has shown promise in the early detection and treatment of ovarian and other types of cancer, says Armani.

But current research methods are only able to capture snapshots of these DNA changes, instead of monitoring the process continuously. Therefore, they miss information that could be vital to understanding processes that have been linked to cancer and other diseases, like Huntington’s and diabetes.

The sensitivity or resolution of many of these techniques is also very poor. “It’s like trying to watch a TV show through static,” says Armani.

Her method will push the field straight to high-definition.

Armani proposes to develop an ultrasensitive nanosensor that would allow her to detect changes in DNA as they’re happening in real-time. This device will also allow her to study a single DNA strand in isolation, rather than groups of hundreds to thousands of strands as researchers do must work with current technology.

As DNA binds to the surface of the nanolaser, the “color” or lasing wavelength emitted by the laser will change. As the DNA changes, the color will change again. The improved resolution is a result of the precision with which the color can be monitored.

Armani—and her lab, for that matter—is uniquely equipped to build this instrument; her postdoctoral work spanned both the chemical engineering and biology departments at the California Institute of Technology.

Vincenzo DeNatale of VITRIS says this background equips Armani with the knowledge to walk that gap between engineering and medicine.

“Armani’s knowledge puts her in the company of the few people in the world who can tackle cancer in this way,” says Vittorino. “She has the vocabulary and the language to speak with the medical professionals with which engineers must work in tandem to solve society’s most pressing problems.”

Armani explains it like this. Like in any other field, communication is critically important. Most hurdles in this field spring from an inability for engineers and physicians to communicate. “Being able to excel in this field requires researchers to dive in,” says Armani, who received a bachelor’s degree in physics from the University of Chicago, and Ph.D. in applied physics with a minor in biology from the California Institute of Technology.

“The first biology course in graduate school was like learning a second language. But by the fourth course, it became apparent that many of the underlying concepts were the same, they just had different names.”

Her laboratory setup illustrates this duality perfectly. One wing focuses on developing new types of optical devices—where you might wear a tip-to-tip suit to keep dust away from microfabrication processes—while the other side focuses on chemistry and biology. A simple lab coat and goggles might suffice over there, she says.

“This NIH project represents the perfect merging of my expertise,” she says. The first part of the project focuses on building the nanolaser instrument, while the second half funds the DNA experiments.

The goal? What Armani calls “un-doing” these triggers that can cause cancer.

She will focus first on developing the instrument and performing initial proof-of-concept experiments using known triggers, such high concentrations of common solvents and cleaning agents. Part of this process involves taking a single strand of DNA, exposing it to a harsh chemical and seeing whether a specific change is initiated. Ultimately she’d like to be able to warn people which triggers to avoid. In the future, she plans to move the instrument to the Epigenome Center at the Keck School of Medicine and work with her collaborators there. “There are truly some of the world experts in this field at Keck, and I am looking forward to collaborating with them to explore the full potential of this instrument.”

Armani joined the Viterbi School in 2008 as an assistant professor, and rapidly began adding awards and distinctions to an already distinguished resume. In 2009, Armani was named to MIT’s coveted TR35 list, which recognizes the world’s top 35 innovators under the age of 35.
Data, Data, Data:
NEW FORMS, BIG VISION

Society is inextricably interconnected, and the amounts of data that come out of its complex interactions exceed our capacity to store it.

Indeed, our cell phones and networked computers and research labs and sensors are creating bits of data—0s and 1s in computer language—on an increasingly mind-boggling scale. By one estimate, humankind created 150 exabytes (a billion gigabytes) of data in 2005. In 2010, just five years later, it will create nearly 10 times that amount.

USC played a significant role in the inauguration of this information explosion decades ago, when researchers at the Information Sciences Institute (ISI) played major role in the creation of the Internet and email. (See page 5 for more about ISI’s role)

This quest continues today. A group of leading Viterbi faculty and researchers have made it their mission to address data on this large scale and ask themselves on a daily basis: How do we make sense of what we’re collecting in every domain imaginable? And how can our findings be put to good use in developing applications that benefit society?

This feature will examine how our researchers are incorporating this data delve in the school’s long-term strategic vision: by working on developing game-changing applications that range from language translation and intelligent video surveillance to terrorism prevention and environmental monitoring; by effectively dealing with infrastructure issues along the way, reaching out to experts in other disciplines such as computational biology and creative arts; and by addressing advancements in network and social interactions.

We invite you to read about our work in not only collecting, processing and analyzing large-scale data, but also in creating new forms with which to address those 0s and 1s.

BY ROBERT BRADFORD,
LEONORA CHU AND
ERIC MANKIN
There is tremendous opportunity in society’s influx of data. This is revolutionizing the way we look at science.” — GAURAV SULTANME, PROFESSOR OF COMPUTER SCIENCE

A robotic glider from Gaurav Sultahme’s laboratory develops and tests algorithms for underwater robotic sensor networks that intelligently gather ocean data.

This summer, the New York Times began a series called “Your Brain on Computers.” The stories examined how the deluge of data can affect how people think and behave. In major media sources throughout the world, from The Economist to CNN, one can read similar stories on a regular basis. The stories echo a common theme: the number of bits of data that are being produced in the world is overwhelming. Why? Scientists have become increasingly proficient at translating the real world of sights and sounds into digital format. That accompanied by decades of rapid technological advances and humankind’s near-complete dependence upon computers have caused an explosion in data that must be stored, mined and analyzed.

For a group of Viterbi faculty, however, this data deluge poses an entirely different set of challenges. They are not overwhelmed by data; in fact, they want to gather more and create new forms of it. They see limitless possibilities in how acquiring and analyzing new information can enhance our understanding of the environment, improve global health, bolster national security, transform the way we create films, and the like goes on.

Deploying Robots to Explore the World

“For me there is tremendous opportunity,” says Gaurav Sultahme, a professor of computer science and co-director of the Robotics Research Lab. “This is the influx of data as a revolution in an entirely different way. This is revolutionizing the way we look at science.”

Sultahme builds robots that will explore the natural world—from oceans to forests to mountains—and bring both data that people have been seeking for decades. He is currently working on developing a fleet of robots that can be deployed in the ocean to understand what is a largely unknown part of the planet. “I often tell people that we have a better map of the surface of Mars than the ocean,” says Sultahme. “But the ocean has tremendous implications for global health and communities. I take my kids to the beach and my son can’t wait to jump in the water. I can see the dawn—it’s very fundamental to us.

“We need to understand how pollution from the Los Angeles River affects coastal communities and we need to look at how pollution affects water quality across the globe.”

Working with field biologists, Sultahme is programming two-meter robots that look like small torpedoes to intelligently gather data about contamination or water quality or the implications of oil spills. The big problem with the RP-31, Sultahme argues, is that scientists have not been able to precisely measure the true extent of the spill.

“This isn’t a precise 3D representation of this oil spill,” he says. “In a decade’s time, however, we could put robots in the ocean and we could get a clear representation of a major spill.”

“My goal is to design robots that in the end can be an instrument for field biologists. What I do in engineering research is to do research that is relevant, to think beyond the boundaries of my discipline.”

Data-Driven Robot Learning

Stefan Schaal similarly sees the future in autonomous intelligent systems as an interdisciplinarity, data-driven endeavor. And Schaal, a professor of computer science, neuroscience and biomedical engineering, focuses into his work on humanoid motor control insights from neuroscience and the behavioral sciences. His goal: to contribute to both a better understanding of the human brain and to develop technological motor systems that have similar robust autonomous performance as humans.

In the last two decades, research on autonomous intelligent systems has increasingly turned towards inductive, data-driven learning and reasoning approaches, says Schaal, who sees a future in which learning and performance in autonomous systems is achieved by machine learning from massive amounts of data generated by massive amounts of sensors.

“This is not unlike how we think that brains must be set up to perform intelligent information processing,” says Schaal.

He works on understanding autonomous systems in motor control, perception and learning. Among the most salient projects he is working on are projects in machine learning with humanoid robots and authors of the videos of the research with a robot dog that has reached almost a million hits on YouTube. In this video, a small robot dog demonstrates unparalleled performance in walking and climbing over very rough terrain.

“One key to our research is inter-disciplinary work between engineering sciences and neuroscience,” Schaal states, “and the glue for a greater understanding often comes from insights from statistical, data-driven learning.”

Peeling Onion Skins

Sitting in an office two doors down, statistical machine learning expert Fei Sha is pondering how the robot brain could make sense of data collected from so many sensors.

“In particular, the robot brain ‘sees’ the environment in a data format represented by hundreds or thousands of numbers—each corresponding to a particular sensor’s output,” says Sha, a professor of computer science.

Identifying patterns in those numbers is a daunting task and recurring theme in modern statistical analysis. Sha and his collaborators are working on inventing algorithms to reduce the amount of these numbers, in an effort technically known as “dimensionality reduction.”

The goal is to bring data from a difficult-to-imagine high-dimensional space down to a more manageable low-dimensional space—in some cases even two-dimensional spaces so that humans can intuit knowledge—without losing the essential structure and information in the data.

As an example, Sha used one of his techniques to place 500 pixels of USPS zip codes on a two-dimensional plane. Each picture has 784 pixels (each could be the output of a photoreceptor sensor). Yet, two-dimensional coordinates are sufficient to capture the essence of the structure hidden in these 500 X 784 numbers. You can a graph, pictures of similar zip code digits are clustered together.

“Once we accomplish this reduction of dimensionality, we can apply existing techniques for displaying and visualizing data,” says Sha. “With our capacity to acquire data becomes more powerful, such techniques as ours will play a more important role in helping both human and robot brains grasp knowledge and information.”

Fei Sha’s work shows that the organization of high-dimensional disparate images on a 2-D plane reveals intrinsically clustering patterns.

Sharing Information—Underwater

John Heidemann, a research associate professor of computer science at the Viterbi School’s Information Sciences Institute (ISI), wants to make sure these robot brains can share information after they are deployed.

“I am interested in the networking part of the pieces,” says Heidemann. “My team is developing the technology to allow these robotic robots to communicate with each other.”

Heidemann says he’s also interested in a related question: How would you put 100 sensors in the Port of Los Angeles to monitor water quality? “My group has looked at the wireless acoustic networking protocols to make that feasible,” he says.

For Heidemann, the goal of new methods to gather and analyze data in remote places is aligned with one of the mottos of the Center for Embedded Network Sensing, a research consortium that includes USC, UCLA, UC Merced, UC Riverside and Caltech: “We want to make the unobservable, observable.”

26 FEATURES FALL 2010 VITERBI.USC.EDU
Sensors for Many Situations

For Ramesh Govindan, the research possibilities using sensors are vast. Govindan, a professor of computer science and head of the Embedded Networks Laboratory at USC, works with a team to move seamlessly from developing sensors to assess the structural integrity of bridges to understanding the mating behavior of birds in remote forests.

“When we deploy sensors in bridges, we are getting a vibration signature. If you are trained, you can get a sense when things are out of whack,” says Govindan. “Now, we’re starting to use tiny sensors to gather the data wirelessly and download it. You can get all the data at your fingertips in real time.”

For Govindan, gathering large amounts of data quickly and analyzing that data has been enhanced exponentially by the proliferation of smart phones. The concept of large numbers of people recording and sharing data is called crowd sourcing, and Govindan and his colleagues believe it has tremendous potential for researchers.

Crowd Sourcing and Air Quality

Subhakar, for example, is examining how crowd sourcing might be used to gather valuable information about air quality in the diverse communities throughout Los Angeles.

“If you extrapolate to saying that within five to 10 years 3 billion people will have a smart phone, the reach of information gathering becomes limitless.”

The ARMOR model runs and churns out a randomized plan for where security personnel should go, and when. The software spews out decisions based on calculated probabilities of where certain locations are most likely to be targeted using mathematical algorithms.

Currently used by the Los Angeles World Airport’s Police Division since 2007, ARMOR provides law enforcement officers with an automated capability to randomize K-9 searches and vehicle checkpoints at Los Angeles International (LAX) Airport. The results have been impressive. It has been credited with the prevention of several loaded weapons being carried into LAX, and the seizure of large quantities of drugs and several arrests at the airport.

ARMOR has also been adapted by the Federal Air Marshal Service and the Transportation Security Administration.

Real-Time Data for Emergency Response

While the ‘També research group addresses questions related to safety in the air, Cyrus Shahabi, who directs the Integrated Media Systems Center at USC, and his colleagues are looking at the ubiquitous problem of ground traffic in Los Angeles. Shahabi wants to understand how to predict traffic patterns so he can help emergency response teams—firefighters, paramedics or police—get to locations as quickly and efficiently as possible.

“We collect data every minute to understand the behavior of traffic by generating a graph that shows the traffic pattern in a certain segment,” says Shahabi. “This connected with our work on randomization. També’s team found that by using fast algorithms to solve large problems in a game-theoretic framework, they could develop the right type of randomization that would be beneficial for security and law enforcement agencies interested in deterring terrorists, who often conduct surveillance and exploit patterns in police activities.”

“Thus was born the concept for Assistant for Randomized Monitoring Of Routes (ARMOR).”

Shahabi’s also developing a unique navigation and information portal called iT Campus USC. The portal includes a three-dimensional rendering of the USC campus and its neighborhood, providing geographic information for students, faculty and staff. The development of iT Campus for USC has far-reaching implications. It could, for example, provide real-time data that would allow the university to analyze traces or employ GPS information to track the spread of disease on campus, or analyze building video and GPS sensors to create an evacuation plan in the case of an emergency.

“Beyond the emergency response uses, Shahabi says iT Campus will serve as a social networking portal for day-to-day use, from learning about campus events to finding apartments to rent around campus.”

We collect data every minute to understand the behavior of traffic by generating a graph that shows the traffic pattern in a certain segment.”

— Cyrus Shahabi, Director of the Integrated Media Systems Center at USC

Mining Blogs, Twitter

Using Twitter information with a distinctly different approach, Yan Liu specializes in mining vast amounts of data, ranging from biological data to climate data to social media. A new assistant professor of computer science at the Viterbi School, Liu spent the past few years at IBM Research in Almaden, where she developed machine learning and data mining algorithms to improve the efficiency of business transactions and generate insights on climate modeling for green energy.

She says her work in large-scale data mining from sources such as blogs can have far-reaching implications. “Our work is trying to identify the main topics from social perspectives—what communities of people are talking about,” says Liu. “We are trying to apply this to
This is the coming of age of a new era in technology... for the first time, we get to actually apply some of the ideas that we’ve been thinking about for decades. And we can produce something that is qualitatively different.

— Paul Debevec, Scientific and Engineering Academy Award Winner and Research Associate Professor of Computer Science
"Data-centric computing design and application are part of the Viterbi School's future. It's not just a simple reflection of the fact that nowadays it's trendy to study data—we should continue to expand our capabilities in this field, building on our diverse strengths."

— SHANGHAI TING, CHAIR OF THE VITERBI DEPARTMENT OF COMPUTER SCIENCE

"Researchers are already building machines that can talk, listen, understand, respond, perhaps even laugh and sing," Nayanman says. "The greatest challenge is how we bring these things together in meaningful and socially relevant ways."

Algorithms to Predict Popularity
Ed Hovy, a senior researcher at ISI who has worked in a wide range of fields, including natural language processing, made an early and striking contribution to this area when he and his research group analyzed the online student discussions of class material in a USC class. He and his colleagues found that it was possible to create an algorithm that identified, precisely and predictably, which participants' contributions were most highly valued. These class logs comprised a very small digital world. More recently, Kristina Lerman of ISI examined the popular Digg website to study the behavior of web users and ultimately predict how popular a specific story might be.

Lerman and a colleague analyzed postings in the site's "upcoming" list of stories, which either disappear into the ether or get "promoted" to the main pages of the site depending on the number of recommendations from readers. For her method, Lerman drew upon mathematical equations similar to the ones used by biologists to describe the collective behavior of social insects. The key was that she found was that the top 30 Digg users—the so-called "super users"—were responsible for the vast majority of the stories posted to the front page of Digg. They're linked to so many other users, which makes their recommendations more viable.

What about early reactions? Lerman and her co-researcher, Ted Gogg of the Institute for Molecular Manufacturing, explored this with the idea of observing how an item accumulates early votes from readers; they could predict how popular a particular recommendation item would be eventually become. "We can then use this "snowball spotting" to predict whether the posted news item will go viral," says Lerman.

Modeling the Impact of Alzheimers
David Kempe, a professor of computer science, is another faculty member whose research interests are strongly driven by the desire to understand and model large collections of individual health data to understand behavioral patterns of interest such as addiction, disease and drug treatment. In collaboration with his large collection of mental therapy data from over 120 couples, he and his collaborators have developed novel algorithms to understand patterns of mental therapy and to predict the impact of various interventions.

In addition to modeling and analyzing social networks, he is particularly interested in game-theoretical concepts, their predictions of human behavior, and computational implications. Among other topics, in joint work with his Ph.D. student Po-An Chen, he is investigating ways to model the notion of altruism and its impact on behavior in networked systems. "Most of traditional economics and game theory assumes that everyone acts entirely selfishly," says Kempe. "Yet, when you look around us, you observe massive amounts of altruism for all the time."

He and Chen have applied a novel model of altruism to scenarios as diverse as traffic in congested city and vaccination decisions in social networks. The starting point was a concept long established by game theory; the Nash Equilibrium. That's a situation in which no player has anything to gain by changing their strategy unilaterally. In turns out that Nash Equilibria in traffic routing can be extremely wasteful. If everyone is completely selfish in how they want to get to work, everyone is a loser. The result is total congestion. However, Kempe found that if all the travelers were just a little altruistic, the performance of the network overall improved. Kempe's work is unusual in that it quantified the value of altruism, showing that the price of anarchy with altruism is significantly smaller than without.

The understanding opens possibilities to policy makers to build incentives in areas such as social networks, to improve the social welfare of altruists in the system, finding ways to identify and reward drivers who behave to optimize the social good, rather than predictable selfish behavior.

Another Chen and Kempe study looks at problems in epidemics and vaccinations. Before an epidemic, people can pay a price (in money, time, risk) to vaccinate themselves. Changes in confidence or hope for the best. But not vaccinating has social consequences you risk passing on the disease to others. "In contrast to the traffic moving scenarios," says Kempe, "it is not enough if everyone is a little altruistic. They need to be a little altruistic and also coordinate their actions to protect the network as a whole. On the positive side, altruism and coordination together always do lead to a socially preferable outcome."

The Ins and Outs of Provenance
Yolanda Gil of ISI has been embedded in studying a broad range of knowledge technologies, gaining some recent recognition from a National Science Foundation grant aimed at facilitating the sharing of scientific workloads. The key problem Gil noticed is one she calls "provenance," which addresses where things come from and whether they can be trusted.

Internet pioneer Van Corl characterizes the issue with provenance: "The problem is—and this is true of books and every other medium—we don't know whether the information we find in the web is accurate or not."

Information should be accompanied by details of who produced it, how it was produced, and whether it was derived from other sources. These provenance records are not difficult to capture in principle, but are complicated by issues of intellectual property rights and privacy, tampering and repurposing by third parties, and even pure lack of motivation of information providers—which results on incomplete and inaccurate records. These challenges are being tackled by the Provenance Incubator Group, a new international effort Gil is organizing within the umbrella of the World Wide Web Consortium (W3C). What's needed, Gil says, is a deeply deeply embedded effort to create rigorous but generally accepted rules.

"We need to develop a good understanding about how to represent, manage, and use provenance in a open system such as the web," says Gil. "The provenance of information may be questionable at times. But here's what's certain: The Viterbi School is at the forefront of creation and innovation regarding all things data. We invite you to continue to follow our breakthroughs in tackling the world's complex challenges."

With the idea that engineers and communicators can explore new frontiers by working side-by-side, faculty from the USC Viterbi School of Engineering and the USC Annenberg School for Communication & Journalism met in the spring to discuss a plan for fostering research collaborations and joint course offerings.

"We have expertise on both sides: on technology, and on communications," said Prof. Michael F. Stork, who co-hosted the forum along with Annenberg Dean Ernest Wilson III. "Combining and leveraging the two will provide new insights, new methodologies and will help create new products."

"Lots of people are using technology to enhance and augment their work," said Prof. Robert E. Chang, who co-hosted the forum along with Annenberg Dean Ernest Wilson III. "We have expertise on both sides: on technology, and on communications."
President C. L. Max Nikias

USC’S 11TH PRESIDENT IS WIDELY HAILED FOR HIS ENERGY, INNOVATIVE IDEAS AND SKILL IN BUILDING PARTNERSHIPS.

announcing the selection of C. L. Max Nikias as USC’s 11th president, Board of Trustees chairman Edward P. Roski, Jr., called him “a remarkable and inspiring leader, a brilliant scholar, and the best possible person to lead our university forward,” an opinion that is widely shared among faculty, students and alumni.

Over the course of his career as a researcher, educator and university administrator, Nikias has earned accolades for his leadership, innovation and fundraising, as well as his ability to build partnerships among varied constituencies.

As the university’s chief academic officer since 2005, he is credited with accelerating the university’s recent academic momentum, creating new leadership, strengthening the academic and medical enterprise, helping attract a series of new donors to the institution, creating innovative cross-disciplinary programs, enhancing the university’s globalization efforts, and increasing support for students at the undergraduate, graduate and doctoral levels.

While serving as dean of the USC Viterbi School of Engineering from 2001 to 2005, Nikias helped solidify the school’s position as a top-tier engineering school, oversaw expansion of the school’s biomedical engineering enterprise, and developed its vibrant entrepreneurship program into one of the largest in the country.

He also established key partnerships with corporations and led a record-breaking fundraising campaign, that among many major gifts, brought in the $52 million school naming gift from Andrew and Erna Viterbi. He also recruited 80 world-class faculty members to the Viterbi School, increasing the number of women on the faculty.

Yannis Vertos, who succeeded Nikias as dean in 2005, echoed the Viterbi legacy when he referred to University with “re-inventing the engineering school at USC.”

“Through Max’s remarkable energy and vision he has left an indelible mark on the school,” said Vertos. “In particular, securing the Viterbi legacy will be viewed as a historic achievement for generations of students to come. With Max at the helm, the university is in great hands to make the next qualitative leap in academic excellence.”

As a candidate selected by the Board of Trustees followed a search process that involved an advisory committee of leaders in the academic and business communities. Vertos, the key faculty and students, faculty, alumni leaders, community representatives, staff, and various university supporters and friends. After reviewing approximately 75 candidates, the committee interviewed seven finalists, all of whom were sitting private candidates or presenters at major universities.

“...It is a testament to Max Nikias’ abilities that, from such an impressive group of educators, he was unanimously recommended by the advisory committee,” said Vertos. “During his 19 years as a faculty member and administrator at USC, he has made an indelible mark on our institution.”

Nikias has been widely expected to succeed USC President Emeritus Steven R. Sample, to tell the Daily Trojan that he took nothing for granted, and was thrilled when he got the official call. “In the whole space of higher education education, this is by far the best job I’ve seen,” he said.

He called it “the greatest honor to be given this opportunity to work toward realizing the dreams and aspirations of the Trojan Family.”

“This incredible, wide-ranging university represents an electric environment, one remarkably skilled at producing new ideas and new leaders to strengthen our society,” he added.

“USC is forward, and accelerating its breakthroughs and accomplishments, and making the most rewarding endeavor in American higher education today.”

“It has been said the best way to predict the future is to invent it. And because USC’s faculty, students, alumni and staff compete as the leading intellectual community of unsurpassed breadth, energy and dedication, I have no doubt that USC will be one of the strongest universities in the future.”

“My wife, Niki, and I and our daughter are very excited about joining the Trojan Family,” he said. “We are looking forward to this great experience.”

NIKIAS WAS RECRUITED TO USC IN 1999 to develop a national center for multidisciplinary research, and became the founding director and principal investigator for the Integrated Media Systems Center (IMSC). In a fierce competition in 1999, USC’s IMSC proposal to NSF was ranked first out of 117, a pool that included proposals from America’s top-ranked research universities.

In April 2009, he was named inaugural chair of the Malcolm B. and Carmen Chair in Technology and the Humanities. As president, he also holds the Robert C. Park and President’s Chair.

Each fall, Nikias teaches a micro-seminar to incoming freshmen on the development of democracy and the dramatic arts within ancient Athens.

C. L. Max Nikias

EDUCATION Graduated with honors from Farnamagia Gymnasium, a school in Cyprus that emphasizes science, history and Greek rhetoric; then from National Technical University of Athens, also known as National Technological Polytechnic, Greece’s oldest and most prestigious institution of higher education. Earned M.S. and Ph.D. degrees from State University of New York at Buffalo.

PROFESSIONAL Internationally recognized for pioneering research on digital signal processing and communications, digital media systems and biomedicine. Senior consultant to a range of corporations and a high-level advisor to the U.S. government, having field security clearance for 15 years. Founding director of two national research centers at USC: NSF Engineering Research Center on Integrated Media Systems and Department of Defense Center for Research on Applied Signal Processing. Innovations and patents in sonar and communication systems adopted by Department of Defense. Author of more than 275 journal articles and papers, three textbooks and eight patents. Mentor of more than 30 Ph.D. and postdoctoral students. Before coming to USC, he held faculty appointments at the University of Connecticut and Northeastern University.

HONORS National Academy of Engineering and fellow of the Institute of Electrical and Electronics Engineers (IEEE), California Council on Science and Technology, and American Association for the Advancement of Science. Recipient of 2008 IEEE Simon Ramo Medal.

PERSONAL Wife Niki has an accounting degree from Athens University of Economics and Business in Greece, and an MBA in finance from SUNY Buffalo; daughter Georgina is a third-year student at USC Gould School of Law; and daughter Maria is a senior at the USC Annenberg School for Communication & Journalism.

To learn more about President Nikias, visit www.usc.edu/president.
The USC Viterbi School of Engineering was thrust into the national spotlight October 6-8, 2010, and demonstrated, in the words of Viterbi Dean Yannis C. Yortsos, “that important issues addressed expertly can change the game.”

The electricity of intellectual innovation filled the University of Southern California’s Boward Auditorium as leaders from a variety of disciplines met to explore the National Academy of Engineering’s 14 Grand Challenges. More than 1,000 innovators, engineers, policy makers, educators, executives and students were on hand to moderate and broadcast veteran Miles O’Brien, CNN’s former Chief Science and Technology Correspondent, fielded questions from audiences harnessing a number of social media including a live blog, a live webcast, Twitter feed and Facebook posts, helping bring the Grand Challenges to life.

The Grand Challenges are 14 issues identified by the NAE as areas where engineers, in concert with key stakeholders, can make the greatest impact to society, worldwide. A powerful line-up of panelists provided solutions from six different perspectives—Technology, Innovation, Policy, Communications, Education and Business—all looking at how engineering empowers society and affects a broader societal landscape.

In introducing the event, Yortsos said that “the second annual Summit is not only a forum on technology, but also one that will shine a light on the multitude of forces that need to be harnessed to solve crucial societal issues.”

USC President C.L. Max Nikias provided the context for the discussion. “The solutions of these Grand Challenges will not be solely technological,” Nikias said. “They cannot be solved only by engineers and scientists. No single discipline can solve them alone—it will require a unified front.”

NAP President and keynote speaker Charles Vest focused on the underlying master challenge: the supply of engineering talent. Vest hoped for more engineering students in the new generation, noting that 21 percent of students in Asia receive degrees in engineering, 14 percent in Europe, and only 4.5 percent in the United States. “As a nation we are moving in the wrong direction,” Vest said. “Where we used to be number one, we are falling down the scale.”

The issue of both improving engineering education and attracting more bright people to technical careers was a continuing theme. The Grand Challenge Scholars Program is part of that effort, as is the Masech Entrepreneurship Prize Competition, newly-established at the Viterbi School (see sidebar on next page).

Additionally, a remarkable student program organized by Viterbi associate dean Louise Yates highlighted the next generation of engineers. The October 6 student day included a K-12 student competition, three demonstration sessions, an address by Dean Yortsos, a special meeting with NAE President Vest, and networking activities that attracted a capacity crowd.

The NAE Grand Challenges Summit proved to motivate and capture the attention of brilliant minds in whose hands the future is now placed. The Summit organizers were the USC Viterbi School of Engineering (host) along with Duke University’s Pratt School of Engineering, the Ohio College of Engineering, and the California Institute of Technology. Critical to the Summit’s success was the support of 25 major corporations, with Lockheed Martin serving as the presenting sponsor.

For an archived webcast of the NAE Grand Challenges Summit please visit www.gcs2010.org/webcast.
Panel Highlights: Approaching the Grand Challenges from Six Perspectives

COMMUNICATION
Communicating science and engineering to a broader audience is itself a challenge and an opportunity. “We have to explain complicated things in a way that an audience can understand,” said panelist Ali Walsh, CNN’s Chief Business Correspondent. New York Times energy reporter Matthew Wald remarked that the public often doesn’t understand fundamental issues behind sustainability. “The trick in a general interest forum is writing something that will appeal to all constituencies.”

EDUCATION
The Education panel focused on the challenge of educating future leaders in Science-Technology, Education-Math (STEM), and emphasized that innovation and education go hand in hand. Susan Hockwood, Executive Director of the California Council on Science and Technology, stressed that educators must also employ digital education to reach students with STEM education and that the digital classroom of the future could augment traditional schools. John Brooks Slaughter, a former director of the National Science Foundation who is now a USC professor of engineering and education, said STEM is critical to meeting the Grand Challenges and tied to American competitiveness.

BUSINESS
The Business panel emphasized the role of corporate investment in bringing the Grand Challenges to life. Peter Williams, CTO for the IBM-IG Rig Green initiative, said that “we need to think of each of these Grand Challenges as a business rather than a grand idea.” One example came from Alexis Livanos, Corporate Vice President and CTO of Northrop Grumman, whose team is focused on the grand challenge of securing cyberspace. Livanos described his team’s “Observe, Orient, Decide and Attack” process to develop flexible systems and flexible architectures that address cyberspace security issues. //

1. Technology Panel: Jean-Lou Chameau, president of the California Institute of Technology, framed the discussion by describing a fundamental difference between the 20th and 21st centuries: “The 20th Century was driven by science, the 21st Century must focus on sustainable progress, and this new approach should define the way we approach technological innovation. The United States needs to spark an innovation arms race,” said Franklin Orr, director of the Precourt Institute for Energy at Stanford University, one of the keys to such sustainable progress is developing powerful new energy solutions.

2. Innovation Panel: John Martin, CEO of General Dynamics Electric Boat; Paul Diamandis, chairman of the X PRIZE foundation; Mark S. Humayun, director of the NSF Biomedical Micro-Electromechanical Systems Engineering Research Center; Jeff Wilcox, Lockheed Martin’s corporate vice president of engineering; Paul Deneve, associate director of the USIC Institute for Creative Technology.

3. Left to right: Viterbi School dean Dennis Cary, Marco Allen and Bettina Diezinger, with Jeff Allen Williams of Vidéo External Relations.

4. Left to right: Viterbi School associate Andrew Viterbi, USC President C.L. Max Nikias, and Viterbi Dean Yannis C. Tzortzinis.

5. Jeffrey Wilcox, corporate vice president of engineering for Lockheed Martin, addresses audience members.

6. Viterbi alumni Candace Bailey, Michelle Fenster and Yamaha Douai.

A Trojan at the Helm
PLANNING SPACE MISSIONS AT NASA’S JPL

Bringing a piece of Mars back to earth. Pecking below the icy surface of Jupiter’s moon Europa, looking for an ocean below. These are some of Firouz Naderi’s and the Jet Propulsion Laboratory’s latest challenges. As an associate director at JPL in Pasadena, Naderi, IMS-EF ’72, Ph.D. ’76, oversees planning for future JPL missions.

One of the space exploration’s most challenging undertakings, the “Mars Sample Return” project, involves three spacecraft. Number One lands and sends out a rover to collect samples. Number Two takes the samples from the first rover and launches it to Mars orbit. Number Three collects the material from the Mars orbit and brings it back to Earth.

But the timeline is long: 2018 is the expected launch date for the first mission. Naderi’s view at JPL began after a series of costly failures at the Lab, which culminated in the loss of a pair of NASA Mars missions in 1999. The era was known for the slogan “ Faster–Butter–Cheaper,” a formula to which cynics wryly added the words “Pick Any Two.”

Following the problems, in the summer of 2000, Naderi helped design a differently conceived, intricately-woven program of missions, in which new space technologies would be spread out evenly across multiple missions to limit the downside consequences of a failure. It worked. He led the program that resulted in three successful missions to Mars, including the spectacular landings of the Spirit and Opportunity rovers that continue to make discoveries well past their planned life spans. These were missions that captured the nation’s imagination.

Naderi, who was born in Shiraz, Iran, and moved to America 45 years ago, did not start out with a space bug like many of his JPL colleagues. He was hoping to become an architect, but “found out that drawing—which you then had to do by hand—was not one of my strong suits, so I went into electrical engineering,” he says.

First he earned a bachelor’s degree from Iowa State University at Ames in 1969, and then went on for a master’s degree and a Ph.D. in electrical engineering at USC.

“The foundation that I built my career on is what USC gave me,” says Naderi, who says he likes to challenge himself by taking on new projects every five years. Before his work on Mars exploration, he worked on a series of efforts including the Origins Program, which was designed to observe the birth of the earliest galaxies, the formation of stars and the search for other Earths.

Naderi says he likes being a systems engineer, which he likens to being an orchestra conductor.

“You can’t be a genius of a violinist who is playing very well,” says Naderi. “You need to appreciate the orchestra’s individual talents, and make music together better than any of them can by themselves.”

Even though he’s fully assimilated, Naderi says never forgets that he came to this country as an immigrant and tries to keep the mindset of an immigrant need to try harder at tasks to show you can compete with anyone—and excel more than most.

As he speaks to USC students, he reminds them of what USC gave him.

“When people say they want to do what I’ve done,” he says, “what I tell them is that USC gives you a firm foundation for this house of knowledge.”

“But beyond that, I tell them, remain hungry and remain curious. Don’t get comfortable. Constantly challenge yourself. If you do well, people will notice.”

Firouz Naderi standing before the nuclear-powered lander Mars Science Laboratory. It will be launched in the fall of 2011, and land in the summer of 2012.

Matthew Aehle
Minnesota-bound Mechanical Mastermind and Running Machine

Provenance: Bethesda, MD (hometown)
Local swimming pool; running track; design lab
Viterbi Degree: M.S. Mechanical Engineering, 2000

Job Hunt Victory: Securing a full-time position as mechanical design engineer with Medtronic in Minneapolis, Minnesota

Engineering Hero: Medtronic co-founder Earl Bakken, who invented the first portable and implantable pacemakers

Minnesota Winter Survival Buy: Top end Columbia ski jacket, waterproof ski goggles

Speediest Accomplishment: Breaking the five-minute mile as a track athlete at Case Western University

Stress-Reliever: Running at least 5 miles four days a week, and swimming the other three

Survival Food: Home-cooked chicken or ground turkey tacos, hold the cheese (“Because I’m lactose intolerant”)

Greatest Fact in Challenging Time: Space Continuum: Running a cross-country meet in NYC, and airing on-time in Washington, D.C., five hours later for a student music award ceremony. (He changed out of his track clothes in a Starbucks restroom.)

Most Ambitious Leadership Title: Risk Management Chair at Case Western’s Phi Kappa Psi Fraternity (he was also Executive Vice President)

Best USC Memory: Performing hip hop dance in the talent competition “Engineering Idol,” despite a stress fracture in his leg three months earlier

Why Engineering? Always more interesting in taking apart his Christmas presents than playing with them

Favorite Viterbi Professors: Yan Jin and Hank Doolin, for putting class concepts within the context of the working world

Toughest USC Class: Finite Element Analysis

Noteworthy AcademicFeat: Co-authoring five papers while a student, including one titled “Ultrasound-Induced Calcium Oscillations and Waves in Chinese Hamster Ovary Cells in the Presence of Micelles”

Biggest Challenge: Taking time to celebrate accomplishments, rather than attacking what’s next on the “to-do” list

Words To Live By: “To give anything less than your best is to sacrifice the gift.”—Steve Prefontaine

Me...Engineered
Studying Optics and C++ Programming from Afghanistan
"BATTING ROCKET FIRE AND CONNECTIVITY ISSUES" TO EARN AN M.S.

Captain Matt Smith spent parts of the last five semesters hunkered down in forward operating bases in Kuwait and Afghanistan.

But the Army intelligence officer didn’t let that geographical challenge stop him from graduating this spring from the Viterbi School with a master’s degree in electrical engineering.

Smith, 25, attended EE classes,charted with professors and took exams 100 percent online through the Viterbi School’s Distance Education Network (DEN).

“Going to graduation was the first time I’d stepped on campus,” says Smith of the May 14 commencement ceremonies.

Smith earned a B.S. in physics while enrolled in the Army ROTC program at M.I.T. Two years into his Army service, he decided to pursue graduate studies while deployed and discovered DEN.

“It changed my perspective of online degrees to see an engineering student of USC’s caliber offer a distance education program,” says Smith.

But the journey was not always easy. During his first semester, he was sent to Kuwait during final exams. And during parts of his last two semesters, Smith was deployed to Bagram Airfield in Afghanistan.

There, he would spend 12-hour days, seven days a week, providing military intelligence support for strategic decision-makers and combat units on the ground.

Then he’d throw down dinner and head back the living quarters he called his “barr” and attend courses online, participate in class discussions, and study well past midnight most evenings.

“Sometimes the base would take rocket fire and my first thought would be ‘Man, this will make it harder to get back to my room and finish my assignment,’ says Smith.

Logistics were sometimes a challenge. Once, while deployed, Smith had to arrange for the re-routing of a government line through Fort Bragg to call into USC for a live chat with Professor Armand Etinguay, who taught EE250 Optics.

Smith will finish his Army commitment in early 2011, after which he plans to pursue a career in medical physics, defense research or quantitative finance.

“My focus was signal and image processing, and all those fields are different applications of the concepts I learned while at the Viterbi School,” Smith says.

Graduating Three Generations of Trojan Engineers
THE PRASAD FAMILY HAS USC “IN THE BLOOD”

Three full generations of Prasads have made USC their home, calling engineering their profession and football their passion.

“I grew up with USC in my blood,” says Sushila Prasad, who hails from Generation #2.

Sudeep’s father Surya Prasad launched the family’s long affiliation with USC. Surya was born in the ancient city of Panam, India, a city located on the banks of the Ganges River. He watched a neighbor go off to USC, and Suryu followed shortly thereafter to start varsity racing.

While at USC, the senior Prasad found a part-time job working as a technician in a painter company’s lab to support himself. He finished his bachelor’s degree in three years, and after his wife and young son joined him in the United States, they made the decision to remain and raise their family here. Within a few years, the young family of three grew to five.

Suryu eventually earned not only two USC degrees, but also the distinction of being the first in the family to graduate from college.

Suryu provided a lot to our family that could not have been imagined over 30 years when my parents came to the U.S. from India,” says Sudeep.

“My dad was drawn to engineering, as I understand it, because engineers were said to make a good living in India,” Suryu recently retired after 32 years of helping to design and build L.A.’s extensive flood control system as a civil engineer for Los Angeles County.

Suryu says he would never have guessed that he’d blaze the trail for two successive generations of Trojan engineers. “They were all very studious,” he says. “Top of their class in math, so I’m not surprised that they ended as engineers from USC.”

His son Ajit graduated one year behind his older sister, Sulekha. Ajit is now an engineering program manager at Qualcomm specializing in managing software releases for the company’s app store, and has worked for Hughes Aircraft Company, DIRECTV, Boeing, and Symantec in the past.

As for Sulekha, she has worked her entire career for Hughes Aircraft, and then Raytheon when it purchased Hughes Aircraft’s defense business.

Sulekha held a grand total of eight jobs at the company before finally landing as a Product Support Division Program Manager that served as her original connection to the company. Bounding out the third generation of USC engineers is Surya’s grandson, Ajay Prasad, 23. As a child, he attended football games at USC with his family, and was often a visitor at Aunt Sulekha’s Hughes Aircraft office on “take a child to work” days.

One of the Prasad family’s favorite memories in their 2004 trip to the Rose Bowl, where USC beat the University of Michigan.

“I taught Ajay and his sisters how to make the Trojan ‘V’ victory symbol as soon as they were old enough,” says Sulekha. “You can never start too young.”
The Viterbi School as Startup Incubator
TWO YOUNG ENTREPRENEURS INVENT IBART, GLASS

What started as a summer lunch for David Hodge (BSE, ’11) became a best-seller in Apple’s App Store, and quickly led to a government contract and airline tickets to Italy and Atlanta from those claming to work with the co-founder of the public transit startup.

In June 2008, the summer after his freshman year, Hodge, a computer science and business administration major, and his friend Ian Leighton, who was involving mechanical engineering design at UC Berkeley, won scholarships to attend a developer’s conference on how to create applications for the iPhone.

Between sessions, they sat on bean-bag chairs and sketched out ideas on a whiteboard before deciding to develop a trip-planning application for BART, a light rail transportation system in the Bay Area. Public transit was a longtime passion of Leighton’s.

They thought the project, an exercise in sorts, would take weeks. But as they started testing the application, they realized IBART just might become a useful, meaningful product with real market appeal. Hodge, now 21, developed algorithms to connect with BART’s data, and Leighton, also 21, worked on the interface.

The duo submitted their free app to Apple in mid-August, and within hours of its release, they had scored 10,000 downloads and dozens of glowing reviews, including an award from San Francisco magazine and mentions in The New York Times, Washington Post, and Atlantic Monthly.

Today, Hodge is working on developing applications for the Los Angeles metro area, as well as Boston and Chicago. He has a version ready for beta-testing in Los Angeles, but the market may be limited, he says, as few Angelinos use iPhones for public transit.

Speaking from Paris, where he was taking history and engineering writing classes through USC’s overseas study program, Hodge says the business took him by surprise. “For all I knew, it wouldn’t amount to anything.”

What wasn’t a surprise was his entrepreneurial path. Hodge had chosen to attend USC because the school gave him the flexibility to take computer science and business classes. “Normally, there’s almost no overlap at engineering schools. But in the real world, there’s a lot of overlap. It was great to learn things in software, dances and then apply them in finance.”

USC provided the resources of a larger university, but had the feel of a small institution, he added. He gravitated to campus culture, in which smart students worked hard but still enjoyed themselves. To help restore balance in his busy life, Hodge trained with the school’s triathlon club.

After IBART’s breakout success, Hodge and Leighton spent the fall of 2008 working on what to do next, and while they decided to keep IBART free and accessible, they offer a paid upgrade ($4.99) that would offer users access to real-time arrival information on trains. Two nights a week, Hodge headed himself up in conference rooms on campus and by that spring, after an all-nighter, finished the upgrade, booked an airline ticket, and presented the app at a small meeting at Apple headquarters to fellow developers.

They named their startup Pandav, which has since incorporated with the help of USC’s Stevens Institute and its Small Business Clinic. The co-founders hired three USC students and landed a contract to develop a version for Alliance’s transportation system. They also released free versions for Chicago and Washington D.C. The original application has been downloaded more than 200,000 times and is used on average between six and 10 thousand times each day.

Pandav has turned a profit from sales of its app, its content from the state of New York, and ad sales.

The Pandav founders are deciding what to work on next. Perhaps New York City, which accounts for half of public transportation use in the United States, or something about Los Angeles, Hodge says.

The potential for the development of iPhone applications is vast. Since the App Store’s inception, developers of all kinds of applications have earned more than $1 billion in revenues and served up more than 5 billion downloads. And iPhone, iPod touch and iPad users download over 16.6 million applications every day, analysts say.

For example, a child who wants to show their parents how to navigate the Internet can write notes indicating to click here, not there, on a webpage. A bride and her bridesmaids—even if they’re scattered across the country—can have a discussion “on” the vendor sites about the dresses they want.

Comments, links and real-time communication can be anchored to text and images, and anyone the user chooses can be included in the conversation—without an added step of sending it in a separate e-mail.

In the future, users will be able to place photos, video files and more on top of this virtual sheet of glass—as part of the growing trend of customizing the web experience with social media.

In Chiapas and raised primarily in Tijuana, Prats has long loved the dynamism and multiculturalism of the borderlands from Los Angeles to Ensenada. He found that spirit at USC, where he studied the application of math, logic, and computer science to business processes in industrial and systems engineering. “It was a growing department, and I wanted to be part of a growing story,” said Prats, adding that he appreciated USC’s diverse community.

“You meet people from all backgrounds and academic fields,” said Prats. “You’ll be in a lunch, talking to someone working on an MRI machine, and on your right, you can talk to someone about the new Mark Twain autobiography.”

For six months, the co-founders worked on market analysis, looking for angel funding and putting together a prototype to show investors—while working multiple part-time jobs. Prats was also balancing work with studies as a doctoral candidate in systems and industrial engineering. They used empty classrooms at USC to practice giving presentations, meet to discuss strategy, and interview potential employees.

Prats says that during the summer of 2009, after raising enough funding to support themselves, the founders devoted themselves full time to their startup, and Prats left the doctoral programs.

Border Stylo, now housed in an office in Hollywood, has 20 employees and interns. Their goals are to improve the beta version with a user feedback and testing, creating the add-on for other web browsers, and expand into international markets.

“I was both excited and nervous about the problems that keep in mind social and human interaction,” Prats said. “/
Remembering Arminta Harness

Former SW Engineer Blazed a Trail for Women Engineers

During a 30-year engineering career, Arminta Harness (BSWME 55) blazed a trail for all technically-minded women by becoming the first woman engineer in the U.S. Air Force.

Harness, who passed away last February in Mt. View, Calif., at the age of 81, had spent 35 years in the Air Force, first as an engineer and later as a manager and executive.

“Time and time again I was told, ‘as long as you’re a woman, you can’t do this job. It’s too hard for you. You won’t be able to do it.’ And I would answer, ‘Well, I’ll do it. I’ll show you I can do it’,” she said in an oral history documented by the Society of Women Engineers (SWE).

Cited as a trailblazer, the Air Force in 2010 declared her an AM Greatest Sister. She received the Air Force’s highest military recognition, the Distinguished Flying Cross, for her service in World War II.

In Memoriam

Edward Louis Armstrong

(bswme 54) died in Lompoc, Calif., on May 10, 1997. He was a retired U.S. Air Force colonel and former commander of the Air Force Academy. He worked at Rockwell International and was a technical consultant for the F-16. He is survived by his daughter Victoria; son John; and three grandchildren.

Mag. Floyd Barrow Jr.

(MASME ’50, 51) passed away on May 25 in Chattanooga, Tenn. He is survived by his family and extended family.

Howard Dean Bungard

(bswme ’54, 55) died December 20, 2009 in Salt Lake City, Utah. He was an engineer at Boeing and served as a consultant to government agencies.

Mark James Effinger

(MSME ’97, 98) died on January 17. He worked in the telecommunications and software industries for more than 20 years and was the vice president of global services and support at Metamorphosis in Edison, N.J. He is survived by his parents Frank and Anita; siblings Kelly, Maureen, and Tracey; and five nieces and nephews.

Robert C. Garrison

(MSPE ’77, 78) died on January 30 in Alaska. He was born in Hollywood, Calif., but went to Alaska as a first-year law student.

In Memoriam

Edward Louis Armstrong

(bswme 54) died in Lompoc, Calif., on May 10, 1997. He was a retired U.S. Air Force colonel and former commander of the Air Force Academy. He worked at Rockwell International and was a technical consultant for the F-16. He is survived by his daughter Victoria; son John; and three grandchildren.

Mag. Floyd Barrow Jr.

(MASME ’50, 51) passed away on May 25 in Chattanooga, Tenn. He is survived by his family and extended family.

Howard Dean Bungard

(bswme ’54, 55) died December 20, 2009 in Salt Lake City, Utah. He was an engineer at Boeing and served as a consultant to government agencies.

Mark James Effinger

(MSME ’97, 98) died on January 17. He worked in the telecommunications and software industries for more than 20 years and was the vice president of global services and support at Metamorphosis in Edison, N.J. He is survived by his parents Frank and Anita; siblings Kelly, Maureen, and Tracey; and five nieces and nephews.

Robert C. Garrison

(MSPE ’77, 78) died on January 30 in Alaska. He was born in Hollywood, Calif., but went to Alaska as a first-year law student.

Nearly 50 years later, women account for 20 percent of the Air Force’s workforce.

“I think that’s a testament to the spirit of women who followed Arminta,” said Angela L. Thompson, president of the Air Force Reserve Association. “They showed that women could succeed in the military.”

Victor H. Smith

(BSME 54, 50) died on January 29, 1992, in Glenside, N.Y. He was an engineer for General Electric until 1979, and embarked on a second career as an engineering consultant and advocate. He is survived by his wife, Mary; and their children.

Kathy Philip Tiel

(BCSE 73, 46) of Portland, Ore., died on July 2, after a battle with pancreatic cancer. She was a structural engineer and founder of KPT Engineering and Development. She is survived by her husband, Don; and their children.

Charles Edward White

(MSME 72) died May 4 in Penticton, BC, after a nearly two-year battle with lung cancer. White was a naval pilot for nearly 20 years and later became a logistician engineer. White is survived by his wife, Myra; and their children.

Denny J. Purkey

(BSPE 67, 76) died January 22 in Portland, Ore. He enlisted in the Air Force and later spent 13 years at McDonnell Douglas as a sensor engineering specialist. Purkey is survived by his wife Diane; sons David, Michael, and Paul; and daughters Ashley, Amara, and Isabella; and five grandchildren.

Reel. Floyd R. Ramcy

(BSCE 59, 86) died on July 25. Ramcy was an insurance agent for 17 years and later developed insurance commission for the state of Oregon until his retirement in 1985. He is survived by his wife, Susan; daughters Shannon, Kate, and Jami; and granddaughter.

To explore the Life Pledge and other estate-planning options, contact the USC Viterbi School’s Office of External Relations at 213.740.2502.

CELEBRATE YOUR LEGACY NOW! Make a Life Pledge and help build a sustainable endowment for future generations of engineers at USC.
Q&A: Captain Chesley B. Sullenberger Comes to USC

Captain Chesley B. Sullenberger served as the USC Viterbi School of Engineering’s undergraduate commencement speaker in May 2010. This fall he will lead a Viterbi School symposium for aviation executives that will combine key concepts of organizational leadership with core ideas of aviation safety.

The pilot and aviation consultant was hailed internation- ally as a hero after he safely guided U.S. Airways Flight 1549 to an emergency water landing in New York’s Hudson River in January 2009. He saw that all 155 passengers and crew disembarked before exiting the Airbus A320 himself. Since then he has become a global ambassador for aviation safety. He has published a memoir entitled Highest Duty and is working on a second book.

Sullenberger is a graduate of the United States Air Force Academy and served as a fighter pilot in the Air Force. He later became a commercial airline pilot and retired in March 2010 from a 30-year career. He earned his bachelor’s in psychol- ogy from the Air Force Academy, a master’s in industrial psychology from Purdue University, and a master’s in public administration from the University of Northern Colorado.

He spoke to the Viterbi School this summer about heroism, aviation safety, and what engineers can do to serve society.

The word “hero” and your name have almost become synonymous. What does this word “hero” mean to you?

In the last year, I’ve thought a lot about what “hero” means. I think that, in our society, over time that word and hence filiation are becoming increasingly common. When used properly, when used appropriately, it’s a word that describes traits and qualities that go to the very heart of what makes us human. Many people may think of these traits and qualities as abstractions, but for some they have real meaning in real life with real consequences. These concepts include duty, honor, courage, and sacrifice. And courage is the absence of fear—fear is normal. Fear is human. Courage is having the discipline and the resolve to do the jobs that are required in spite of it.

Tell us about the class you will be instructing/participating in at USC. What will be the focus, and what do you hope the students will take away from the course?

This course will be a symposium at the executive level of aviation enterprise. The major focus will be to create an understanding of how important leadership and the creation of a positive organizational culture are to safety. The two-day executive symposium is specifically tailored to decision-makers within aviation organizations, and participants can expect to leave the program with an advanced knowledge of aviation safety and the kind of organizational culture that is required to effectively achieve it.

We at USC were honored to have you as our commencement speaker in 2010. Tell us again what you hoped to impart as lessons learned for our young graduates?

When I began to prepare myself for the day’s address, I asked myself what I could say that would be relevant across a gulf of nearly 80 years. And that was to talk about what I’ve continually worked to do in my life. I advised the gradu- ate to invest in themselves, never stop learning, and never stop growing, either professionally or personally. Choose to show up for your life, choose not to be a bystander. Choose to make a difference.

We are an engineering school and we strive to prepare the next generation of engineering leaders. What do you see as the engineer’s main contribution to aviation safety? To society?

It’s important for engineers to understand and be well- schooled in the science of safety. Your engineering work can be top notch and it’s still possible to fail if you don’t allow for human performance considerations. You must have a system safety mindset that acknowledges not only human abilities, but human limitations. By doing this, we provide incredible values for society.

You have become a global ambassador for aviation safety. What particular areas need special focus or improvement?

Pilot experience is an issue, not only in the United States, but around the world. As we transition from one generation of pilots to the next, we need to make sure those who follow have the same fundamental skills, in-depth knowledge, and the kind of judgment that comes only from flying experience.

Additionally, pilot fatigue is an issue that needs to be addressed. In this country, our decades-old rest rules need to be updated to reflect how we fly now, both on short- and long-haul flights.

And as we transition to the Safety Management System (SMS) concept, safety will become embedded in our pro- cesses as a core business function, and management at every level of the organization will be held accountable for safety. SMS has the potential—if properly implemented in an effective organizational safety culture—to take aviation safety to the next level.

Viterbi School’s Distance Education Network

The Power of Education – Anywhere, Anytime

Over 35 M.S. Degree Programs, Non-credit Courses & Certificate Programs

Technology
- Watch courses via live webcast or archive
- Full interactivity for classes viewed in real time
- Over 130 courses available online in fall and spring semesters

Academics
- 168 tenured and tenure-track faculty members
- Dedicated professors who are leaders in their fields
- Interdisciplinary programs

Students
- Flexibility for professional engineers to pursue career and education simultaneously
- Network of more than 1,000 professional students
- M.S. students receive identical curriculum as on-campus students

New Programs for 2010
- M.S. in Green Technologies
- M.S. in Financial Engineering
- M.S. in Health Systems Management Engineering
- M.S. in Electrical Engineering (Electric Power)

...and exciting new short courses in a variety of disciplines

What our students say:
“arly bus work schedule posed a huge obstacle for me to attend classes in person. Fortunately, the online DEN program at USC made it really easy for me to watch the classes during my free time at night and on the weekends. DEN made it possible for me to achieve my goal.”
-Dennis Lee, Northrop Grumman Corporation