

DYI PPE Disinfectant Methods

Andrea Armani

This webinar will be recorded and shared after.

Research Group Members

Post-docs/Graduate Students

Undergrad Students

Collaborators

Jerry Lee
David Agus
Mary Galinski
Qiming Wang
George Hatch
Yuji Zhao
Rosemary She
SMP Engineering
SK Gupta

More info

http://armani.usc.edu

@ArmaniLab

@ArmaniResearchLab

armanilab

What is viral disinfection?

Key features for viral function:

- Protein for "target" identification
- RNA (or DNA, if bacteria) for replication
- Capsid for protection

Approaches for (viral) disinfection

Looking past COVID-19

28% fewer deaths from antibiotic resistance in hospitals (since 2013 CDC AR Threats Report); however, <u>community spread has increased</u>.

"More action is needed across settings, industries and countries to fully protect people from antibiotic resistance threats." – 2019 AR Threat Report, CDC

E. coli

Pseudomonas aeruginosa

Staph

Salmonella

Why does UV-C work? Biology

Pyrimidines are in both bacteria (DNA) and virus (RNA), so anything that impairs DNA or RNA will impact both.

Why does UV-C work? Biology

Expose either DNA or RNA to UV-C

UV-C works with both bacteria and viruses.

Dimers change the structure, causing transcription errors (and other things), ultimately resulting in death

UV-C disinfection approaches

Conventional UV-C disinfection system

- Designed for small medical instruments
- Fixed source for replacement parts (e.g. sole supplier on UV-C bulbs)

Biosafety cabinet (research setting)

- Automated disinfection cycle built-in
- Larger chamber allows for larger items
- No safety precautions or shields

UV-C disinfection approaches

Conventional UV-C disinfection system

- Designed for small medical instruments
- Fixed source for replacement parts (e.g. sole supplier on UV-C bulbs)

Biosafety cabinet (research setting)

- Automated disinfection cycle built-in
- Larger chamber allows for larger items
- No safety precautions or shields

EPA/FDA guidelines:

- Dose for virus: ~100mJ/cm²
- Dose for bacteria: ~10mJ/cm²

Distributed UV-C disinfection

Goal: Create, lightweight, inexpensive, easilymanufacturable system that could be used to create a distributed network of "localized disinfection stations".

Key design criteria (FDA/others):

- Achieve >100mJ/cm² of UV-C intensity
- Lightweight, inexpensive, portable
- 3 log reduction in growth (FDA standard)

Digging into the science a little: Why chrome?

No interior coating (no reflection)

Chrome (=AI) provides up to 90% at 260nm

Test system

Used plastic petri dishes as mimic

 \longrightarrow

Bacillis cereus as test system (gram +, endospore forming, UV resistant)

Achieved goal!

>3 log reduction with 1 minute exposure!

Then what?

True meaning of Trojan Family

Moving outside of USC

Collaboration with

S. K. Gupta

Gripper for Manipulating

What now?

USC Viterbi
School of Engineering

Research Group Members

Post-docs/Graduate Students

Undergrad Students

Collaborators

Jerry Lee
David Agus
Mary Galinski
Qiming Wang
George Hatch
Yuji Zhao
Rosemary She
SMP Engineering
SK Gupta

More info

http://armani.usc.edu

@ArmaniLab

@ArmaniResearchLab

armanilab