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The
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David Blackwell
1890-1962
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0 Sequential probability ratio test

= A Wald, The Annals of Mathematical Statistics, 1945

= Samples: Ym = [yhyg, C e aym]

o . Py .. |s1
- Likelihood ratio: L (ym) = =~ |

py-'m, |SO
S0,

= Detection rule: O(Lm(ym)) = { 51,

Lm(ym) S A
Ln(ym) > B

sample, else

time, number of samples

same experiment
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y = f(X, U) — X active hypothesis testing

observation state, control

Jovanov et al. Journal of NeuroEngineering and Rehabilitation
2005
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0 Different sensors are good at discriminating different states

o True state influences best experiment/observations



The quality of observations %%gbi

0 How to quantify informativeness?

u® uﬁi u”

u“ control = choice of experiment
likelihood of a particular hypothesis

0 Choice of control makes hypotheses easier to distinguish



Metrics for distributions %%gbi

0 Relative entropy (Kullback-Leibler distance)

xT
Dl = 3 p(a)log 22
= ( (F)

> 0

D(plleg) # D(qllp)

0 Not a true distance — does not satisfy triangle inequality, asymmetry...

S. Kullback & RA Leibler, "On information and sufficiency,” Annals of
Mathematical Statistics, 22(1): 79-86, 1951
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The quality of observations %%gbi

~

u® u 3 u”

u“ control = choice of experiment
likelihood of a particular hypothesis

0 The most informative experiment depends on the true
hypothesis
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. controller decides who
to test at each time

k y,’
e = 2 o o o e« o o onetestforeach
TroRORRTTD person
M people
X = true system state

v _ 0 if noanomaly X e{o,1,...,M)
g if component 5 anomalous

M=7X=3
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conditional density
Up=1Y; Us=5Y, Us=2Ys; U;=3Y, Weassume these are known

\ 4[ / /[ We will need to learn these
po(y) p1(y)
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o Experiment Selection Strategy:

(9‘ ‘!‘ ‘!‘ ﬂn inference
U,Y1) UzY2) ... (Un,Yn) ... (Un,Yn) Xn
Unwgn(lfn)

experiment choice — which person to test?

o Inference Strategy: decide infected or not infected

Pt

binary valued X'y ~ f(Iny1) not infected X = ()
inference infected X 7& 0
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Max-min KL-Divergence Viterbi
I
o Define ch,,B distributions
D* = max min a(u) D} argmax: o
aceAU jeU
uelU
= min gwea&(; B(J)D; argmin: /3

2  Lemma: we can compute D*

~(sa)

ueU u
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b
o Theorem:

Strong converse: from decomposition and
strong converse in Polyanskiy, Poor and Verdu Trans IT 2010

I_ —|0ng5?v <INV (EN + E—N) —+ Iogi
n EN

—log ¢y > INVN (EN — E—N) — 0 (Iog i)
r ) ot

function of D*

o Bounds enable the design of strategies

INVy: quantile function of Zn + D(3*||p1)
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2 Open-loop randomized (OPE): asymptotically optimal

randomly select component from distribution o™
uniform in symmetric case

o Deterministic adaptive (DAS): also asymptotically optimal

at each time n, select the component
that minimizes Z,,_1(j) — log p1(j)

function of previous observations and experiment choices

o Example setting: two-people and binary observations
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Practical SARS-CoV-2 Testing I\;Egbi

=t

Random samples \
from streets
ﬁ
Samples : F R N Y
=04 4 , TYTYYY

Test center

Grocery stores

1. What are good testing strategies?

2. What is the role of cheap tests?
g . ’ﬁ‘ 3. Can we pool tests?
Workplaces T




Practical SARS-CoV-2 Testing I\;Egbi

FDA OKs updated instructions for
Abbott POC coronavirus test amid

Eﬁ ﬂ accuracy concerns
= % (]
Random samples )
from streets
[0, , _ some
2 ﬁ' n j

Grocery stores

Test center

1. What are good testing strategies?

2. What is the role of cheap tests?
g . ’ﬁ‘ 3. Can we pool tests?
Workplaces T
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Group Testing — pooling samples Viterbi

2 4
2 Used in WW2 to test soldiers for syphilis

R. Dorfman, "The Detection of Defective Members of Large Populations,"” The
Annals of Mathematical Statistics, 1943.

@@@ﬂ iﬁi{iﬁ@@@ﬂ«ﬁj

XTIy

i
14

a2 Ntests =2 log (N) tests




Prior Belief: At Most One Anomaly I\%fgbi

4

Eventually anomaly is
localized and sampled for
confirmation

All components grouped
together to confirm there is no
anomaly

Initial groups aimed at

. . . : / searching T

i

Corpanert rFzec oy ki

Single anomaly at index 3 No anomaly



Two Anomalies I\%%e(;bi

e - .

Confirmation: normal
components are pooled and
anomalies are tested individually

——

Initial tests are individual -
known to be optimal with

. uniform prior - but groups are -Groups fbrméa_
- formed as belief improves *_initially due to-
: prior info

«—— Anomaliesatland4 ——

Prior: Any number anomalous Prior: At most two anomalous
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24

15000

—i— Group with prior - 80%
—&— Group without prior - 80%
Group with prior - 90%
—=— Individual - 80%
»&— Individual - 90%

retesting enables achieving
accuracy of 99.9%

10000

Total number of tests

5000

o M= & - | I I
0 500 1000 1500 2000 2500

Number of Individuals



Fully-adaptive Tests I\;iigbi

| —©— Without prior - 95% e Perform a cheap test first on
- With prior - 95%, 80% . . . .
L Without prioe . 0% each individual — we consider
S=Wiih prior - 00%, 80% tests with 80% and 90%

| —&— With prior - 99%, 90% |
aCcuracy

e Use the prior for group
testing subsequently

e Can reduce number of group
tests by 20%

Tests per Individual

* Performing cheap tests first
better when the cost of
cheap test is about 10-15

0.2 . . . times smaller
0 200 400 600 800 1000 1200
Number of Individuals

Fully adaptive tests can take a lot of time — need to parallelize



Challenges %%gbi

o Optimal test design is computationally expensive

0 We can exploit machine learning/neural network tools to compute optimal
solution

ol )
TN

Q(u1)
p(2)
Q(?Lg)
p(3)
Q-values

Belief vector

Fully connected
hidden layers

o Have to do this carefully
= recursive neural networks did not not work
= Need the output of experiment sequences

o Exploit structural properties of optimal solution to design NN



USC
Deep Q Network Viterhi

1
o Evolution of expected confidence under hypothesis h, over time

DQN learns the best policy

e
o DAS close to optimal rate 12|
0 OPE asymptotically optimal = |
5 *—% DQN
but very slow convergence e
. Z 08 ¥—¥ OPE
Q not optimal 5 aa EIS
% - - Optimal Rate
2 0.6 |
04 Ak —;....--f--—g....-i—-—*----i——ir—*‘—*_ a—A—A— AT
M ca i
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Time Horizon N



Other Strategies
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random >

/

coding theory: LDPC
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fixed pooling

USC
Viterbi

AX=Db

optimization
box

/

compressed
sensing LDPC

(lasso, AMP) decoder

NON-ADAPTIVE, but can be parallelized
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0 Our method is data adaptive

More challenging to parallelize

0 The test matters

Serological tests are blood based — easy to pool?

0 Gold standard: PCR (polymerase chain reaction)
= For SARS-CoV-2 test on RNA

Can parallelize

Ingredients for RT-PCR

SCI=NCE

BEBRARRREER
Viral RNA

Wuhan tested millions of people for

Ll 1

e s L o R <« :'_lj*"l__"l'
COVID-19 in just days. Could US A s R 1111)
cities do the same? o8

The city of Wuhan, China, where the COVID-19 outbreak first emerged,

recently launched a campaign to test every one of its 11 million
residents for the virus,

Mayo Clinic explainer
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o35 4
0 Our method is data adaptive v

= More challenging to parallelize “T'esting the T'ests: COVID-19
Antbody Assays Scrutinized for
) Th e test matters Accuracy by UCST, UC Berkeley

. Researchers
= Serological tests are blood based — easy to pool? I

0 Gold standard: PCR (polymerase chain reaction)
= For SARS-CoV-2 test on RNA

. Can para”ellze CORONAVIRUS (COVID-19)

COVID-19 Genetic PCR Tests Give False
Negative Results if Used Too Early

A new study confirms what many suspected, that PCR testing
even 8 days after infection shows 20 percent false positives
June 10, 2020 — In a new study, Johns Hopkins researcher —
testing people for SARS-CoV-2 (COVID-19) too early in the course of
infection is likely to result in a false negative test, even though they may
eventually test positive for the virus.[1] This is important to understand
since many hospitals are using these COVID tests to screen patients

before imaging exams, diagnostic testing or procedures.
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o Optimized solutions for a finite number of observations/tests

. Not asymptotics as in traditional methods
o We can design for both the exploration and the exploitation phases

o We can accommodate different kinds of information

. Prior medical history, outcomes of other measurements (temperature,
symptoms)

. We can accommodate different kinds of SARS-CoV-2 tests, each with
different efficacies

o Optimal testing for hot spots?

o Challenges
. Complexity
. Unknown onset

- Parallelization S o s S
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