

Group Testing for Efficient SARS-CoV-2 Assessment

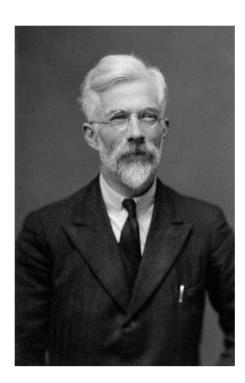
Dhruva Kartik, Urbashi Mitra Ashutosh Nayyar

Ming Hsieh Department of Electrical Engineering
University of Southern California

Peter Kuhn, Biological Sciences, Biomedical Engineering, Medicine Neeraj Sood, Public Policy

Thanks to: ONR N00014-15-1- 2550, NSF CNS-1213128, NSF CCF-1410009, ARO W911NF1910269, NSF CPS-1446901

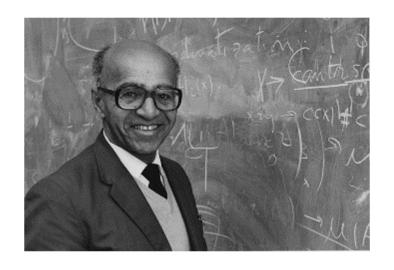
Design of Experiments



Sir Ronald Fisher 1890-1962

More Broadly

Herman Chernoff



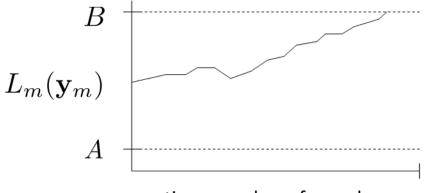
David Blackwell 1890-1962

Abraham Wald

Classical SPRT

Sequential probability ratio test

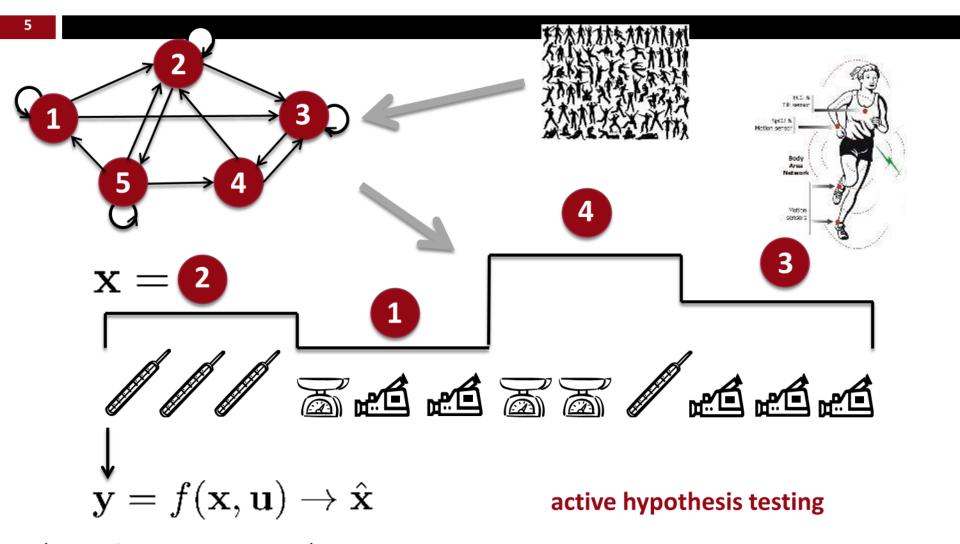
- A Wald, The Annals of Mathematical Statistics, 1945
- Samples: $\mathbf{y}_m = [y_1, y_2, \dots, y_m]$
- $\begin{array}{ll} \bullet & \text{Likelihood ratio: } L_m(\mathbf{y}_m) = \frac{p_{\mathbf{y}_m|s_1}}{p_{\mathbf{y}_m|s_0}} \\ \bullet & \text{Detection rule: } & \delta(L_m(\mathbf{y}_m)) = \left\{ \begin{array}{ll} s_0, & L_m(\mathbf{y}_m) \leq A \\ s_1, & L_m(\mathbf{y}_m) \geq B \\ \text{sample, else} \end{array} \right. \end{array}$



time, number of samples

same experiment

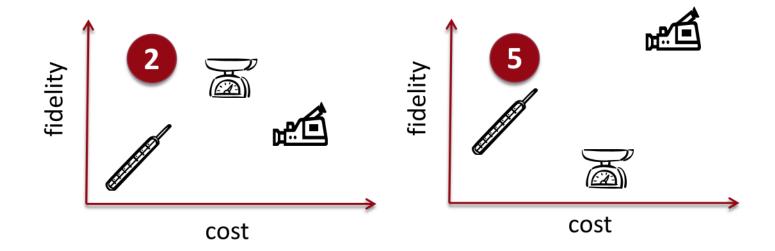
Controlling Observations



observation

state, control

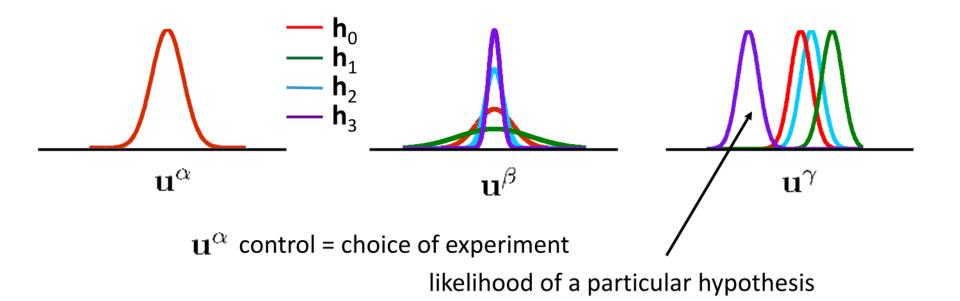
Heterogeneity



- Different sensors are good at discriminating different states
- True state influences best experiment/observations

The quality of observations

How to quantify informativeness?



Choice of control makes hypotheses easier to distinguish

Metrics for distributions

Relative entropy (Kullback-Leibler distance)

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

$$\geq 0$$

$$D(p||q) \neq D(q||p)$$

Not a true distance – does not satisfy triangle inequality, asymmetry...

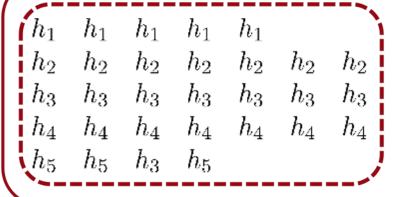
S. Kullback & RA Leibler, "On information and sufficiency," *Annals of Mathematical Statistics*, 22(1): 79-86, 1951

10

hypotheses candidate

Active Hypothesis Testing

EXPLORATION



 h_2 h_2 h_2 h_2 h_2 h_3 h_3 h_3

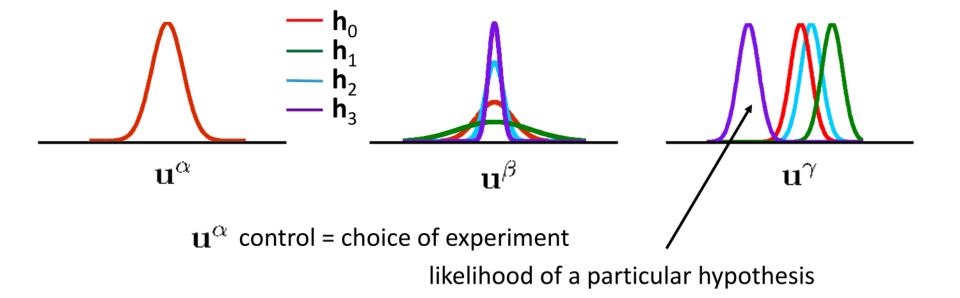
EXPLOITATION

 u_1 u_2 u_3 u_2 u_3 u_2 u_1

 u_2 u_3 u_3 u_2 u_2 u_2

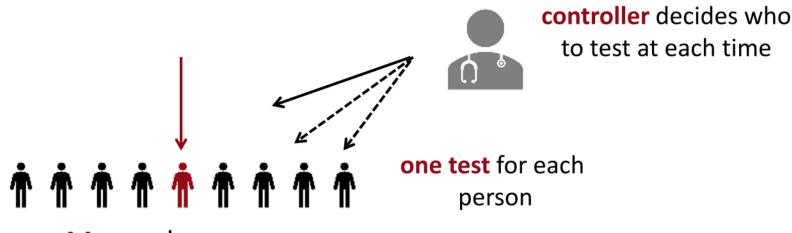
policies/experiments

The quality of observations



The most informative experiment depends on the true hypothesis

System Model



M people

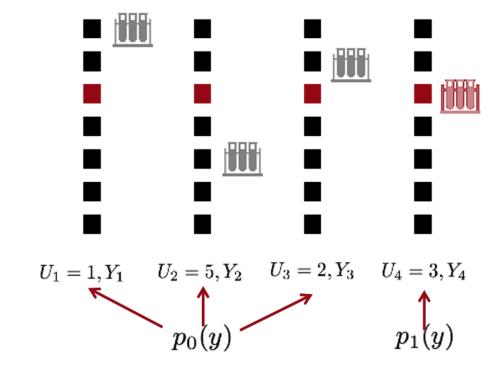
X = true system state

$$X = \begin{cases} 0 & \text{if no anomaly} \\ j & \text{if component } j \text{ anomalous} \end{cases}$$

$$M = 7, X = 3$$

$$X \in \{0, 1, \dots, M\}$$

System Evolution

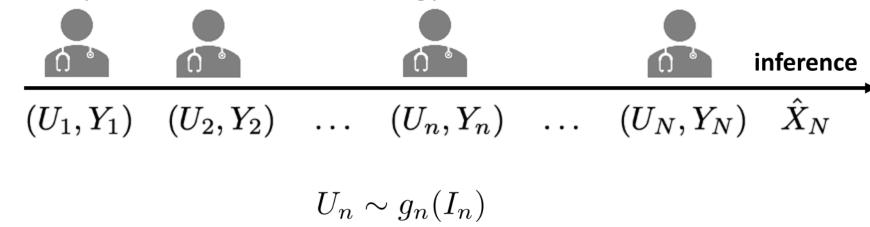


Person uObservation y

conditional density
We assume these are known
We will need to learn these

Goals

Experiment Selection Strategy:



experiment choice – which person to test?

Inference Strategy: decide infected or not infected

binary valued
$$\hat{X}_N \sim f(I_{N+1}) \qquad \text{not infected } X = 0$$
 infected $X \neq 0$

Max-min KL-Divergence

Define

lpha,eta distributions

argmax: α^*

$$D^* \doteq \max_{\alpha \in \Delta \mathcal{U}} \min_{j \in \mathcal{U}} \sum_{u \in \mathcal{U}} \alpha(u) D^u_j$$

argmin: β^*

$$= \min_{\beta \in \Delta \mathcal{U}} \max_{u \in \mathcal{U}} \sum_{j \in \mathcal{U}} \beta(j) D^u_j$$

Lemma: we can compute D*

$$D^* = \left(\sum_{u \in \mathcal{U}} \frac{1}{D_u^u}\right)^{-1}$$

Non-asymptotic Bounds - Symmetric

Theorem:

Strong converse: from decomposition and strong converse in Polyanskiy, Poor and Verdu Trans IT 2010

function of D*

Bounds enable the design of strategies

Comparisons

ullet Open-loop randomized (OPE): asymptotically optimal randomly select component from distribution $lpha^*$

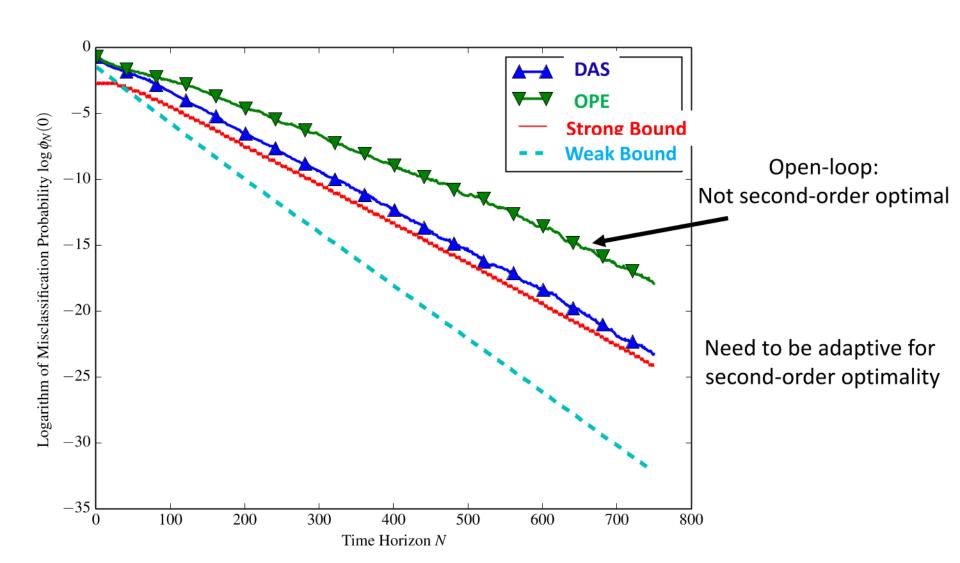
uniform in symmetric case

Deterministic adaptive (DAS): also asymptotically optimal at each time n, select the component j that minimizes $Z_{n-1}(j)-\log \tilde{
ho}_1(j)$

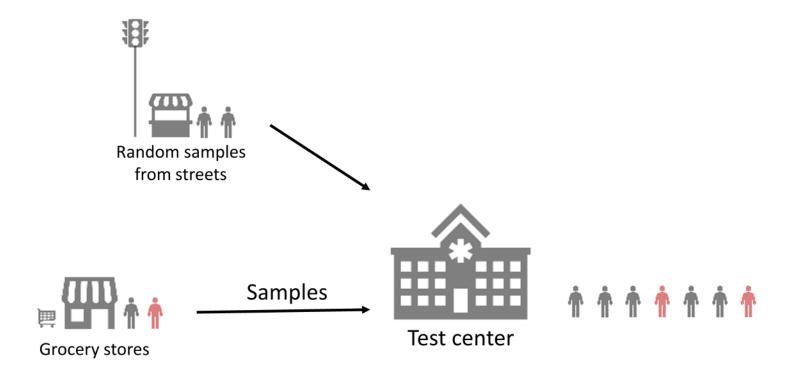
function of previous observations and experiment choices

Example setting: two-people and binary observations

Numerical Results

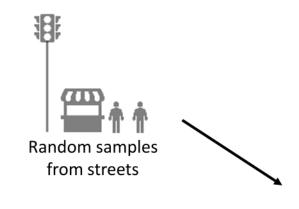


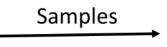
Practical SARS-CoV-2 Testing

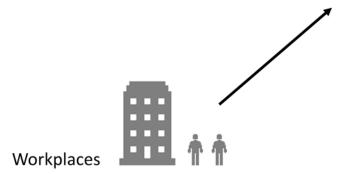


- 1. What are good testing strategies?
- 2. What is the role of cheap tests?
- 3. Can we pool tests?

Practical SARS-CoV-2 Testing



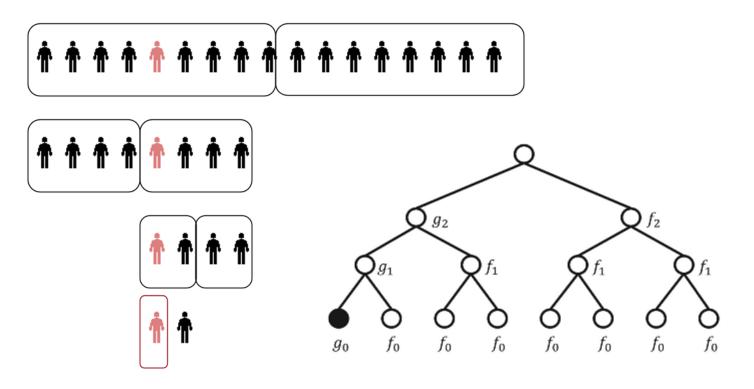




- 1. What are good testing strategies?
- 2. What is the role of cheap tests?
- 3. Can we pool tests?

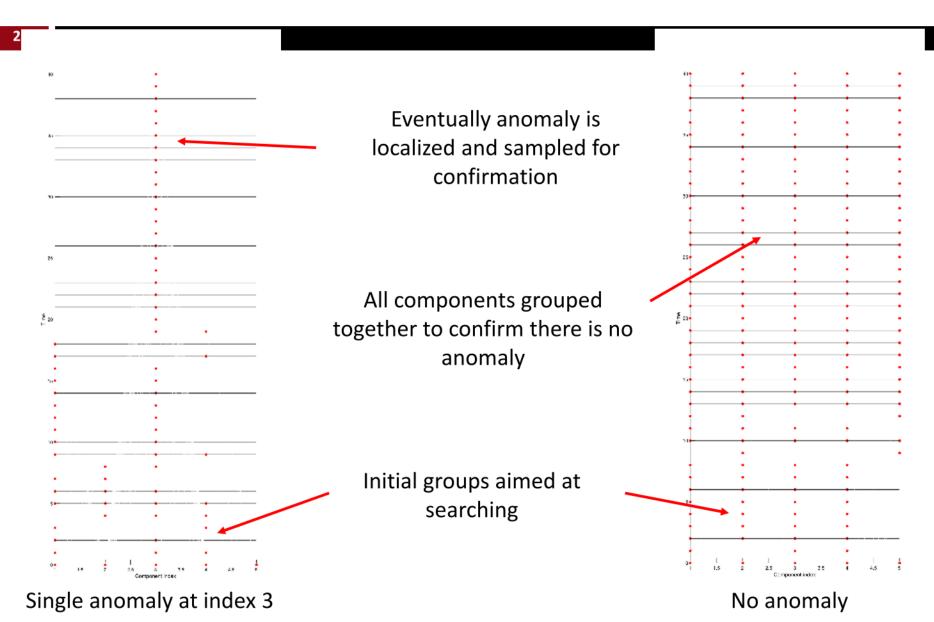
Group Testing – pooling samples

- Used in WW2 to test soldiers for syphilis
 - R. Dorfman, "The Detection of Defective Members of Large Populations," The Annals of Mathematical Statistics, 1943.

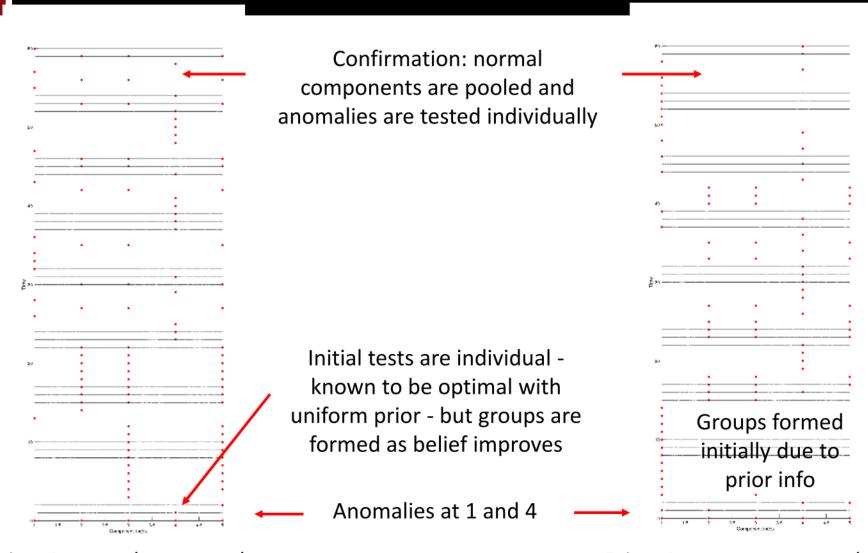


 \square N tests \rightarrow log (N) tests

Prior Belief: At Most One Anomaly



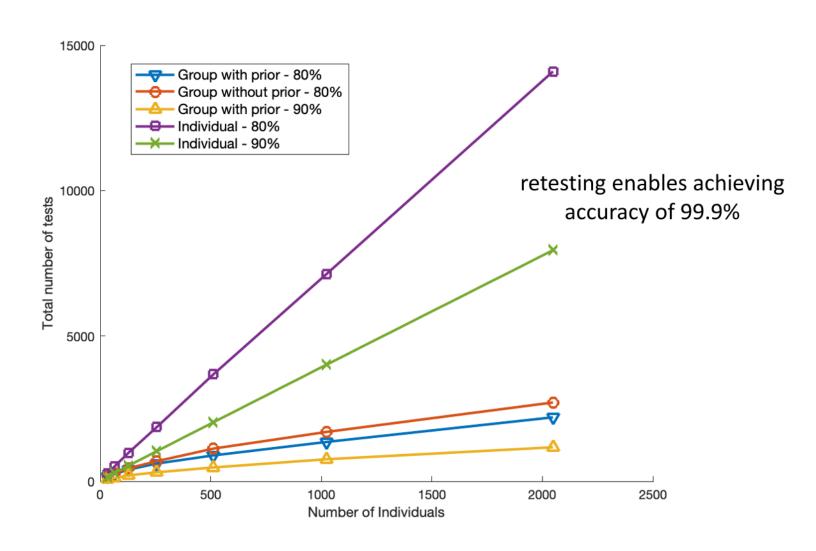
Two Anomalies



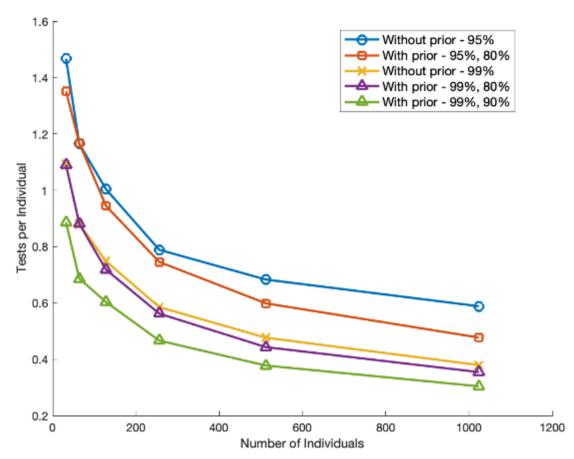
Prior: Any number anomalous

Prior: At most two anomalous

A single type of test



Fully-adaptive Tests

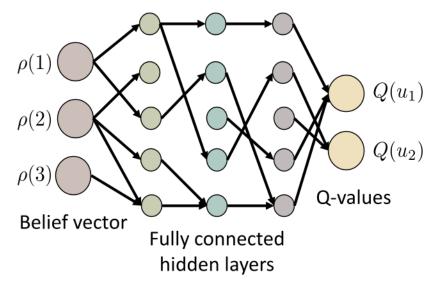


- Perform a cheap test first on each individual – we consider tests with 80% and 90% accuracy
- Use the prior for group testing subsequently
- Can reduce number of group tests by 20%
- Performing cheap tests first better when the cost of cheap test is about 10-15 times smaller

Fully adaptive tests can take a lot of time – need to parallelize

Challenges

- Optimal test design is computationally expensive
- We can exploit machine learning/neural network tools to compute optimal solution



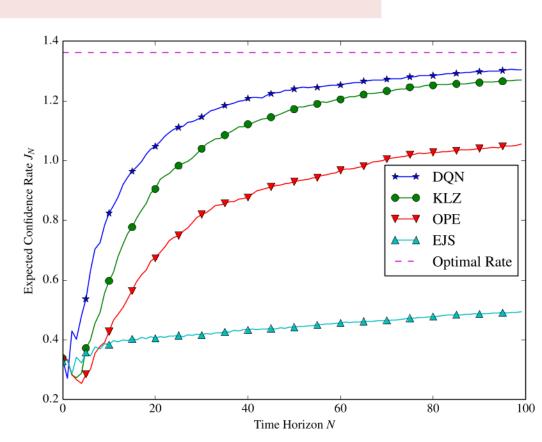
- Have to do this carefully
 - recursive neural networks did not not work
 - Need the output of experiment sequences
- Exploit structural properties of optimal solution to design NN

Deep Q Network

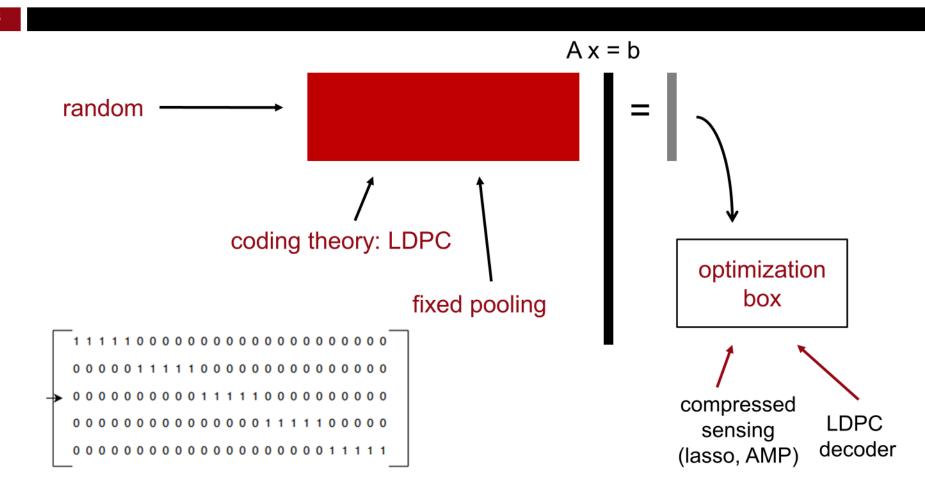
Evolution of expected confidence under hypothesis h₀ over time

DQN learns the best policy

- DAS close to optimal rate
- OPE asymptotically optimal but very slow convergence
- EJS not optimal



Other Strategies

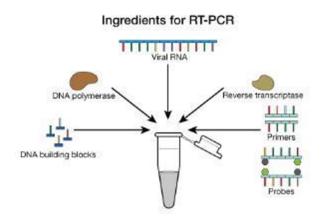


Contrasts

- Our method is data adaptive
 - More challenging to parallelize
- The test matters
 - Serological tests are blood based easy to pool?
- Gold standard: PCR (polymerase chain reaction)
 - For SARS-CoV-2 test on RNA
 - Can parallelize

Wuhan tested millions of people for COVID-19 in just days. Could US cities do the same?

The city of Wuhan, China, where the COVID-19 outbreak first emerged, recently launched a campaign to test every one of its 11 million residents for the virus.



Mayo Clinic explainer

Contrasts

- Our method is data adaptive
 - More challenging to parallelize
- The test matters
 - Serological tests are blood based easy to pool?

- Gold standard: PCR (polymerase chain reaction)
 - For SARS-CoV-2 test on RNA
 - Can parallelize

NEWS | CORONAVIRUS (COVID-19) | JUNE 10, 2020

COVID-19 Genetic PCR Tests Give False Negative Results if Used Too Early

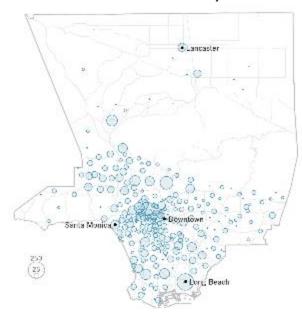
A new study confirms what many suspected, that PCR testing even 8 days after infection shows 20 percent false positives

June 10, 2020 — In a new study, Johns Hopkins researcher testing people for SARS-CoV-2 (COVID-19) too early in the

testing people for SARS-CoV-2 (COVID-19) too early in the course of infection is likely to result in a false negative test, even though they may eventually test positive for the virus.[1] This is important to understand since many hospitals are using these COVID tests to screen patients before imaging exams, diagnostic testing or procedures.

Conclusions

- Optimized solutions for a finite number of observations/tests
 - Not asymptotics as in traditional methods
- We can design for both the exploration and the exploitation phases
- We can accommodate different kinds of information
 - Prior medical history, outcomes of other measurements (temperature, symptoms)
 - We can accommodate different kinds of SARS-CoV-2 tests, each with different efficacies
- Optimal testing for hot spots?
- Challenges
 - Complexity
 - Unknown onset
 - Parallelization



References

- 1. Zhu, Junan et al. "Noisy Pooled PCR for Virus Testing." bioRxiv (2020)
- Aldridge, Matthew. "Conservative two-stage group testing." *ArXiv* abs/2005.06617 (2020)
- Mutesa, Leon et al. "A strategy for finding people infected with SARS-CoV-2: optimizing pooled testing at low prevalence." *medRxiv* (2020)
- 4. Ghosh, Sabyasachi et al. "A Compressed Sensing Approach to Group-testing for COVID-19 Detection." arXiv: Quantitative Methods (2020)
- 5. Aldridge, Matthew. "Rates of Adaptive Group Testing in the Linear Regime." 2019 IEEE International Symposium on Information Theory (ISIT) (2019)
- 6. Kartik, Dhruva, Ashutosh Nayyar, and Urbashi Mitra. "Fixed-horizon Active Hypothesis Testing." *arXiv preprint arXiv:1911.06912* (2019). (Under review in TAC)
- Kartik, Dhruva, Ashutosh Nayyar, and Urbashi Mitra. "Testing for Anomalies: Active Strategies and Non-asymptotic Analysis." arXiv preprint arXiv:2005.07696 (2020).(Accepted in ISIT 2020)
- Narayanan, Krishna R., Anoosheh Heidarzadeh, and Ramanan Laxminarayan. "On Accelerated Testing for COVID-19 Using Group Testing." arXiv preprint arXiv:2004.04785 (2020).
- Aldridge, Matthew, Oliver Johnson, and Jonathan Scarlett. "Group testing: an information theory perspective." *arXiv preprint arXiv:1902.06002* (2019).