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_ USC Viterbi
H u m a n -H u m a n C o ntag I o n School of Engineering

-Minimally requires: Susceptible (§), Infected (7 ), and Recovered (R) (includes perished)*
-Important Variables? Number/Area. Key to infection is proximity.
-Need to model how (the rates by which) these populations covert to one another.

S+ 7 -27
J >R

Analogies with chemical reaction processes

Different sub-populations - chemical species

Number densities (people/area) - molecular concentrations
Infection rates - chemical reaction rates

Spatial transport - advective and diffusive (or dispersive) fluxes

* One can also subdivide further to asymptomatic, secondary infections, etc.
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USC Viterbi
The General Model

Advection Diffusion Reaction
TEAV- (@) = -V (D) + R, (i =S,1,R)
D; = — DpV(N;/p)

—JV; is density (number/area) of species 4, q is advective velocity

—D; is diffusive (or dispersive) flux of 4,
— R; is reaction rate of species (e.g. that converts populations due to infection)

Also,

M+N}+NRZP and DSZDIZDRZD
Important question: What are the reaction rates? Use mass-action kinetics

Infection Rate \

Ri=KNg Ny — AN ; Rs= — KN Nj; Rp= - AN,
\ /

Recovery (or Perished) Rate

“SIR” model, but in terms of areal densities: appropriate for such process
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USCViterbi

-Ais inverse {time} (14/Day): rate, on average, infected individuals recover or die.

-K'is inverse {time*(number/area)}: frequency and contact (collisions). K increasing with
density (infected and susceptible). Also, contagion is negligible below a certain density (e.g.
corresponding to 6 ft). Therefore,

0; p<po
P—Po

KF(—); <p<
of \ =0, Po <P <P

K =

where F(x) is a linear function, F(0) =0, F(1) =1; pp=0.1m2?andp; = 1m™2.

-Meaningless to provide area-wide averages (e.g. for states or countries) without
differentiating on density (e.g. high density: urban, stadiums, schools, retirement homes; and
low density: farms, rural).

2
-The diffusion coefficient assumes a random walk. For office work, D = 1073 mT, two orders
of magnitude larger than molecular diffusion in gases.

9/10/2020 Epidemics as Chemical Reaction Processes



USC Viterbi

The Governing Equations

School of Engineering

Make things dimensionless: Densities normalized by p, time by 1/A, space by length [,
K by K, velocities by q. (s, i, r are normalized densities- “probabilities”)

di
ot

9 ‘Vp =
¢ + Dav - Vp =0

% + (Dav — CVInp) - Vs = CV*s — Ry(p, 7)si
— + (Dav — CVInp) - Vi = CV?i + Ry(p,7)si — i

2 + (Dav — CVinp) - Vr = CV?r — i

Defined dimensionless numbers, Da = % (Damkohler number), C =

is known as the Thiele modulus) and

R

0=

K
—2px(p, 1)
A

k(p, 1) = {Ko F (

P(1-1)—pg

D -
—==9¢ % (¢
0; p(1—1) <po

P ): po<p(l—r)<ps

R, dependence on density and extent of contagion
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The important parameter R, "

1. From
i
5t (Dav — CVInp) - Vi = CV?i + Ry(p,1)si — i

Initial rate is (Ro(p,0) — 1)i
Initial infection grows exponentially, if Ro(p,0) > 1, or decaysif Ry(p,0) < 1

2. Ry depends both on density p (number/area) and extent of contagion r
KU 0; p(1—1)<po
Ro = TPK(P, r) <o) = KoF (M)? Po<p(l-1)<p

P1—Po

3. Ry(p, 0) decreases by decreasing p (spatial distancing), and/or K, (facial covering, isolation
of infected, increased air circulation, vaccination), or by increasing A (fast recovery)

4. R, decreases with extent of contagion and has a final value (at corresponding Ry(p, 0))

Ry(p, ) = Ry(p,0)(1 — 1)
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Results

A. No entry or exit in or out, constant density, spatially
uniform profiles: “Batch reactor” (SIR-like) model

* Infection Curves

* Herd Immunity

* Enforced health policies (e.g. spatial distancing, lockdown)

* Initial conditions; entry in the system for a finite time
(“imported infection”)

e “Commuting”

B. Spatially variable interactions: effect of diffusion;
infection waves
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A. The Batch Reactor (SIR-like) USC

Problem

Viterbi

School of Engineering

9/10/2020

No spatial gradients; uniform mixing

dt

— + (Dav%Vlnp) Vs = /?z — Ry(p, 1)si

il + (Dav/Vlnp) Vi = Cy-l— Ro(p,r)si — i

E + (Dav%Vlnp) -Vr = ?4 — 1
9p ‘Vp =
¢ + Dag/Vp =0
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A. The Batch Reactor (SIR-like) USCViterbi
Problem (cont.)

Set of ordinary differential equations

s'(t) = — Ry(p,7)si

i'(t) = Ry(p,T)si — i
r'(t) =i

s+i+r=1

Initial conditions

I(O) = 10,5(0) =S50 = 1-— 10, T(O) =0
Solution requires an initial (even if infinitesimal) seed

Problem can be solved analytically (closed form expression)
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A. The Batch Reactor (SIR-like) USC Viterbi
Problem: Infection Curves
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Infection Curves: Ry(p, ) (solid lines); Ry(p,7) = Ry(p, 0) = 2.5 (dashed lines); i, = 107>
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A. The Batch Reactor (SIR-like) USCViterbi
Problem: Effect of R,

School of Engineering
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1. Herd Immunity is a Function of R.
2. It always satisfies Ry () (1 — 75) < 1, namely it is stable to perturbations, but
not to structural (i.e. Ry) perturbations. i’ (t) = i{Ry(p,0)(1 —1,) —1} <0
3. Duration of epidemic is longer at lower infection rates.
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A. The Batch Reactor (SIR-like) USC Viterbi
Problem: Effects of Policy

Variation of R, e.g. through policy (lock-down); effect of relaxing restrictions;
and the emergence of “second” wave.
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5 months
Ry(p,0)=3,t€(0,1), Ry(p,0)=0.8,t € (1, 10), Ry(p,0) =3, t € (10, 30)
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A. The Batch Reactor (SIR-like) USC Viterbi
Problem: Effect of Initial Conditions
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1. The effect of initial condition is to simply delay the onset of contagion, all else being equal
(Ro(p, 0)=2.5). Essentially, behavior is solely controlled by R,.

2. Similar is the effect of a travel ban on imported infections.
3. Ineither case, contagion is avoided only if public health policy results into Ry (p, 0) < 1.
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A. The Batch Reactor (SIR-like) USCViterbi
Problem: “Commute”

1
Home 08l
Ryp(0) =0
Time= 1_ l g 06 | i
I g 4=="" RO,W(p! O)=5
£ R ,0)=1.66
Z o4l |~ 0,ef£((_p1)3
Work a =1/
RO,W(O) - 5 02Fh
Time= A

Commute between “home” and “work” (where Ry ,(p,0) = 0, and Ry, (p, 0) > 1) leads
to an effective Rg s = AR, (p, 0)

(equal to the mean value- weighted by the fractional time of exposure 7).

9/10/2020 Epidemics as Chemical Reaction Processes




B. Spatially variable USC Viterbi
interactions: Effects of diffusion >

% + (D/’g— CVinp) - Vs = CV*s — Ro(p, )si

di
3 + (I%— CVinp) - Vi = CV%i + Ry(p,1)si — i

2 + (D — CVinp) - Vr = CV?r — i

9p . —
P + D;[ Vp =0
Focus on diffusion only

No advection: Then, p is only a function of space (not time)
Explore effects of diffusion on the onset and propagation of infection waves
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B. Spatially variable USC Viterbi
interactions: Traveling Waves

Constant p, 1-D, steady-states in coordinate ¢ = x — Vt, where V is wave velocity

—

—Vg—§=c§—§—Ro§z —0 < § < o0
i ,

—V%=6%+RO§I—I —o0 < & < oo
i ..

—V%=C%+I —00 < & < o0

" 95 o1 _ or
No-flux conditions at the ends: %9 0 até =+

Find

co

V= L ud
- TV,OO —ool f

Questions: 1. Are the profiles the same as for the Batch (SIR) problem?
2. And what is the effect of the diffusion coefficient C?
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B. Spatially variable interactions: yygCviterb;
1-D Contagion Waves
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B. Spatially variable interactions: USCViterbi
Comparison with batch “SIR” model "

Density fraction

Effect of diffusion is to slightly lower the equivalent infection rates
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B. Spatially variable interactions USC Viterbi
Diffusion dependence

School of Engineering

We can explicitly remove the C-dependence by introducing rescaled space

coordinates and velocities, £ = v/C{and V = W+/C.
All equations remain the same, so we can formally take C = 1 and derive results

independent of C

i dg

1
W =
Ty

In dimensional form

V= \/_

11d5

l
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Wave velocity increases with the square root of DA and with Ry(p, 0)
Same results hold for radial symmetry geometries
Diffusion and reaction lead to translational waves
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B. Spatially variable
interactions: 1-D Heterogeneity

USC Viterbi

School of Engineering

9/10/2020

Density fraction

Density fraction

Lensity fraction
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Variable density:

1 o ew - Ry(p,0) =3, for x € (-80, -25) and x € (25, 80); Ry(p,0) = 1.5
Uob/_/ — for x € (-25, 25).
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B. Spatially variable USC Viterbi
interactions: 2-D geometries

Effect of 2-D heterogeneity in Ry(p, 0): 1. Layered System

Ry (p,0) = 2 in the outer layers, and Ry(p, 0) = 3.5 in the inner layer.
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As in 1-D, wave velocities and profiles rapidly reach their steady-state values
corresponding to the ambient Ry(p, 0). Connecting wave-fronts are linear.
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B. Spatially variable USC Viterbi
interactions: 2-D geometries

Effect of 2-D heterogeneity in Ry(p, 0): 2. 4- Quadrant System

Ry(p,0) =2 in NW and SE, and Ry(p, 0) = 3.5 in NE and SW
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As in layered system, wave velocities and profiles rapidly reach their steady-state
values corresponding to the ambient Ry(p, 0). Connecting wave-fronts are linear.
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Concluding Remarks USCViterbi

School of Engineering

* Understanding of the spreading of epidemics can benefit substantially from
reaction-diffusion analogies.

* Important to model in terms of spatial densities.

* Kinetics can naturally incorporate spatial distancing.

* Important variable Ry(p, r) is a function of spatial density and process extent

* S|R-like model results as the Batch Reactor equivalent.

* Herd immunity is a function of Ry(p, 0). It is a useful concept only when R, (p, o)
does not change.

* The effect of initial conditions is only relevant as long as it provides time for policies
to reduce Ry(p, 0).

* Relatively rapid fluctuations in R, result into an effective value equal to the mean.

» Diffusion is necessary to initiate propagating infection waves.

* The wave velocity scales with the square root of diffusion coefficient and the inverse
recovery time, and increases almost linearly with Ry(p, 0).

* In 2-D heterogeneous systems, the wave solutions rapidly approach the asymptotic
states corresponding to the ambient R,(p, 0).

*  While here restricted to three species, the approach applies to additional species and
demographics.
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