Modeling Epidemics as Chemical Reaction Processes

Yannis C. Yortsos and Assad Oberai (in collaboration with Harisankar Ramaswamy)

Viterbi vs. Pandemics!

USC Viterbi

School of Engineering

A Series on COVID-19

VITERBI VS. PANDEMICS!

A Lecture Series by Viterbi Faculty

MODELING EPIDEMICS AS A CHEMICAL REACTION PROCESS

September 10, 2020 | 6pm PT

Dean Yannis C. Yortsos Vice Dean Assad Oberai

BIOLOGY AND DISINFECTION FOR COVID-19

September 24, 2020 | 6pm PT

Professor Andrea Armani

ESTIMATION OF RISK

October 8, 2020 | 6pm PT

Professor Bhaskar Krishnamachari

VACCINE DEVELOPMENT

October 22, 2020 | 6pm PT

Professor Pin Wang

FLUID DYNAMICS OF THE SPREAD OF COVID-19

September 17, 2020 | 6pm PT

Prof. Ivan Bermejo-Moreno, Prof. Fokion Egolfopoulos, Prof. Mitul Luhar

AUTOMATION TECHNOLOGIES FOR ASSURING HUMAN SAFETY DURING COVID-19 PANDEMIC

October 1, 2020 | 6pm PT

Professor Satyandra Kumar Gupta

PREDICTIONS ON COVID-19 TO THE CDC

October 15, 2020 | 6pm PT

Prof. Vasilis Marmarelis,
Prof. Viktor Prasanna, Ajitesh Srivastava

MISINFORMATION DETECTION; MITIGATION ON COVID-19

October 29, 2020 | 6pm PT

Professor Yan Liu

DIGITAL CONTACT TRACING

November 5, 2020 | 6pm PT

Professor Cyrus Shahabi

PROTEIN ENGINEERING BY DIRECTED EVOLUTION, AS RELATED TO COVID-19

November 12, 2020 | 6pm PT

Professor Richard Roberts

Lecture Series by
Viterbi faculty
TA: Melanie McMullan
macmulla@usc.edu

Human-Human Contagion

- -Minimally requires: Susceptible (S), Infected (I), and Recovered (R) (includes perished)*
- -Important Variables? Number/Area. Key to infection is proximity.
- -Need to model how (the rates by which) these populations covert to one another.

$$S + \mathcal{I} \to 2\mathcal{I}$$
$$\mathcal{I} \to \mathcal{R}$$

Different sub-populations chemical species

Number densities (people/area) molecular concentrations

Infection rates chemical reaction rates

Spatial transport advective and diffusive (or dispersive) fluxes

Analogies with chemical reaction processes

^{*} One can also subdivide further to asymptomatic, secondary infections, etc.

The General Model

Advection Diffusion Reaction
$$\frac{\partial \mathcal{N}_i}{\partial T} + \boldsymbol{\nabla} \cdot (\boldsymbol{q} \mathcal{N}_i) = -\boldsymbol{\nabla} \cdot (\boldsymbol{\mathcal{D}}_i) + \mathcal{R}_i \qquad (i = S, I, R)$$

$$\boldsymbol{\mathcal{D}}_i = -D\rho \boldsymbol{\nabla} (N_i/\rho)$$

- $-\mathcal{N}_i$ is density (number/area) of species i, q is advective velocity
- $-\mathbf{D}_i$ is diffusive (or dispersive) flux of i,
- $-\mathcal{R}_i$ is reaction rate of species (e.g. that converts populations due to infection) Also,

$$\mathcal{N}_S + \mathcal{N}_I + \mathcal{N}_R = \rho$$
 and $\mathbf{\mathcal{D}}_S = \mathbf{\mathcal{D}}_I = \mathbf{\mathcal{D}}_R = \mathbf{\mathcal{D}}$

Important question: What are the reaction rates? Use mass-action kinetics

$$\mathcal{R}_i \text{= } \text{K} \mathcal{N}_S \mathcal{N}_I - \Lambda \mathcal{N}_I \text{ ; } \mathcal{R}_S \text{= } - \text{K} \mathcal{N}_S \mathcal{N}_I \text{; } \mathcal{R}_R \text{= } - \Lambda \mathcal{N}_I$$
 Recovery (or Perished) Rate

"SIR" model, but in terms of areal densities: appropriate for such process

Notes

- - Λ is inverse {time} (14/Day): rate, on average, infected individuals recover or die.
- -K is inverse {time*(number/area)}: frequency and contact (collisions). K increasing with density (infected and susceptible). Also, contagion is negligible below a certain density (e.g. corresponding to 6 ft). Therefore,

$$\mathbf{K} = \begin{cases} 0; & \rho < \rho_0 \\ \mathbf{K}_0 F\left(\frac{\rho - \rho_0}{\rho_1 - \rho_0}\right); & \rho_0 < \rho < \rho_1 \end{cases}$$

where F(x) is a linear function, F(0) = 0, F(1) = 1; $\rho_0 = 0.1 \, m^{-2}$ and $\rho_1 = 1 \, m^{-2}$.

- -Meaningless to provide area-wide averages (e.g. for states or countries) without differentiating on density (e.g. high density: urban, stadiums, schools, retirement homes; and low density: farms, rural).
- -The diffusion coefficient assumes a random walk. For office work, $D=10^{-3}\frac{m^2}{s}$, two orders of magnitude larger than molecular diffusion in gases.

The Governing Equations

Make things dimensionless: Densities normalized by ρ , time by $1/\Lambda$, space by length l, K by K_0 , velocities by q. (s, i, r are normalized densities-"probabilities")

$$\frac{\partial s}{\partial t} + (Da\boldsymbol{v} - C\boldsymbol{\nabla}ln\rho) \cdot \boldsymbol{\nabla}s = C\nabla^2 s - R_0(\rho, r)si$$

$$\frac{\partial i}{\partial t} + (Da\boldsymbol{v} - C\boldsymbol{\nabla}ln\rho) \cdot \boldsymbol{\nabla}i = C\nabla^2 i + R_0(\rho, r)si - i$$

$$\frac{\partial r}{\partial t} + (Da\boldsymbol{v} - C\boldsymbol{\nabla}ln\rho) \cdot \boldsymbol{\nabla}r = C\nabla^2 r - i$$

$$\frac{\partial \rho}{\partial t} + Da\boldsymbol{v} \cdot \boldsymbol{\nabla}\rho = 0$$

Defined dimensionless numbers, $Da = \frac{q}{\Lambda I}$ (Damkohler number), $C = \frac{D}{\Lambda I^2} = \varphi^{-2}$ (φ is known as the Thiele modulus) and

$$R_0 = \frac{K_0}{\Lambda} \rho \kappa(\rho, r)$$

$$R_0 = \frac{K_0}{\Lambda} \rho \kappa(\rho, r) \qquad \kappa(\rho, r) = \begin{cases} 0; & \rho(1-r) < \rho_0 \\ K_0 F\left(\frac{\rho(1-r)-\rho_0}{\rho_1-\rho_0}\right); & \rho_0 < \rho(1-r) < \rho_1 \end{cases}$$

 R_0 dependence on density and extent of contagion

The important parameter R_0

1. From

$$\frac{\partial i}{\partial t} + (Da\boldsymbol{v} - C\boldsymbol{\nabla}ln\rho) \cdot \boldsymbol{\nabla}i = C\nabla^2 i + R_0(\rho, r)si - i$$

Initial rate is $(R_0(\rho, 0) - 1)i$

Initial infection grows exponentially, if $R_0(\rho, 0) > 1$, or decays if $R_0(\rho, 0) < 1$

2. R_0 depends both on density ρ (number/area) and extent of contagion r

$$\boldsymbol{R_0} = \frac{\boldsymbol{K_0}}{\boldsymbol{\Lambda}} \boldsymbol{\rho} \boldsymbol{\kappa}(\boldsymbol{\rho}, \boldsymbol{r}) \qquad \kappa(\rho, r) = \begin{cases} 0; \ \rho(1-r) < \rho_0 \\ K_0 F\left(\frac{\rho(1-r)-\rho_0}{\rho_1-\rho_0}\right); \ \rho_0 < \rho(1-r) < \rho_1 \end{cases}$$

- 3. $R_0(\rho, 0)$ decreases by decreasing ρ (spatial distancing), and/or K_0 (facial covering, isolation of infected, increased air circulation, vaccination), or by increasing Λ (fast recovery)
- 4. R_0 decreases with extent of contagion and has a final value (at corresponding $R_0(\rho, 0)$)

$$R_0(\rho,\infty) \approx R_0(\rho,0)(1-r_\infty)$$

Results

A. No entry or exit in or out, constant density, spatially uniform profiles: "Batch reactor" (SIR-like) model

- Infection Curves
- Herd Immunity
- Enforced health policies (e.g. spatial distancing, lockdown)
- Initial conditions; entry in the system for a finite time ("imported infection")
- "Commuting"
- B. Spatially variable interactions: effect of diffusion; infection waves

A. The Batch Reactor (SIR-like) USC Viterbi **Problem**

No spatial gradients; uniform mixing

$$\frac{\partial s}{\partial t} + (Da\boldsymbol{v} - C\boldsymbol{\nabla}ln\rho) \cdot \boldsymbol{\nabla}s = C\boldsymbol{\nabla}^{2}s - R_{0}(\rho, r)si$$

$$\frac{\partial i}{\partial t} + (Da\boldsymbol{v} - C\boldsymbol{\nabla}ln\rho) \cdot \boldsymbol{\nabla}i = C\boldsymbol{\nabla}^{2}i + R_{0}(\rho, r)si - i$$

$$\frac{\partial r}{\partial t} + (Da\boldsymbol{v} - C\boldsymbol{\nabla}ln\rho) \cdot \boldsymbol{\nabla}r = C\boldsymbol{\nabla}^{2}r - i$$

$$\frac{\partial \rho}{\partial t} + Da\boldsymbol{v} \cdot \boldsymbol{\nabla}\rho = 0$$

A. The Batch Reactor (SIR-like) USC Viterbi Problem (cont.)

Set of ordinary differential equations

$$s'(t) = -R_0(\rho, r)si$$

$$i'(t) = R_0(\rho, r)si - i$$

$$r'(t) = i$$

$$s + i + r = 1$$

Initial conditions

$$i(0) = i_0; s(0) \equiv s_0 = 1 - i_0; r(0) = 0$$

Solution requires an initial (even if infinitesimal) seed

Problem can be solved analytically (closed form expression)

A. The Batch Reactor (SIR-like) USC Viterbi **Problem: Infection Curves**

School of Engineering

Infection Curves: $R_0(\rho, r)$ (solid lines); $R_0(\rho, r) = R_0(\rho, 0) = 2.5$ (dashed lines); $i_0 = 10^{-5}$

A. The Batch Reactor (SIR-like) USC Viterbi **Problem: Effect of R₀**

Herd immunity (variable R_0) Herd immunity (constant R_0)

Maximum infection fraction **Duration of infection** (t=10 corresponds to 5 months)

- Herd Immunity is a Function of R_0 .
- It always satisfies $R_0(r_\infty)(1-r_\infty)<1$, namely it is *stable to perturbations*, but not to structural (i.e. R_0) perturbations. $i'(t) = i\{R_0(\rho, \infty)(1 - r_\infty) - 1\} < 0$
- Duration of epidemic is longer at lower infection rates.

A. The Batch Reactor (SIR-like) USC Viterbi **Problem: Effects of Policy**

Variation of R_0 , e.g. through policy (lock-down); effect of relaxing restrictions; and the emergence of "second" wave.

 $R_0(\rho, 0)$ = 3, t ∈ (0, 1), $R_0(\rho, 0)$ = 0.8, t ∈ (1, 10), $R_0(\rho, 0)$ = 3, t ∈ (10, 30)

A. The Batch Reactor (SIR-like) USC Viter bi School of Engineering Problem: Effect of Initial Conditions

- 1. The effect of initial condition is to simply delay the onset of contagion, all else being equal $(R_0(\rho, 0) = 2.5)$. **Essentially, behavior is solely controlled by R_0**.
- 2. Similar is the effect of a travel ban on imported infections.
- 3. In either case, contagion is avoided *only if* public health policy results into $R_0(
 ho,0) < 1$.

A. The Batch Reactor (SIR-like) USC Viterbi Problem: "Commute"

Commute between "home" and "work" (where $R_{0,h}(\rho,0)=0$, and $R_{0,w}(\rho,0)>1$) leads to an effective $R_{0,eff} = \lambda R_{0,w}(\rho, 0)$

(equal to the mean value- weighted by the fractional time of exposure λ).

B. Spatially variable interactions: Effects of diffusion

School of Engineering

$$\frac{\partial s}{\partial t} + (D\alpha \mathbf{v} - C\nabla ln\rho) \cdot \nabla s = C\nabla^2 s - R_0(\rho, r)si$$

$$\frac{\partial i}{\partial t} + (D\alpha \mathbf{v} - C\nabla ln\rho) \cdot \nabla i = C\nabla^2 i + R_0(\rho, r)si - i$$

$$\frac{\partial r}{\partial t} + (D\alpha \mathbf{v} - C\nabla ln\rho) \cdot \nabla r = C\nabla^2 r - i$$

$$\frac{\partial \rho}{\partial t} + D\alpha \mathbf{v} \cdot \nabla \rho = 0$$

Focus on diffusion only

No advection: Then, ρ is only a function of space (not time)

Explore effects of diffusion on the onset and propagation of infection waves

B. Spatially variable interactions: Traveling Waves

Constant ρ , 1-D, steady-states in coordinate $\xi = x - Vt$, where V is wave velocity

$$-V\frac{\partial \bar{s}}{\partial \xi} = C\frac{\partial^2 \bar{s}}{\partial \xi^2} - R_0 \bar{s}\bar{\iota} \qquad -\infty < \xi < \infty$$

$$-V\frac{\partial \bar{\iota}}{\partial \xi} = C\frac{\partial^2 \bar{\iota}}{\partial \xi^2} + R_0 \bar{s}\bar{\iota} - \bar{\iota} \qquad -\infty < \xi < \infty$$

$$-V\frac{\partial \bar{r}}{\partial \xi} = C\frac{\partial^2 \bar{r}}{\partial \xi^2} + \bar{\iota} \qquad -\infty < \xi < \infty$$

No-flux conditions at the ends: $\frac{\partial \bar{s}}{\partial \xi} = \frac{\partial \bar{t}}{\partial \xi} = \frac{\partial \bar{r}}{\partial \xi} = 0$ at $\xi = \pm \infty$

Find

$$V = \frac{1}{r_{V,\infty}} \int_{-\infty}^{\infty} \bar{\iota} d\xi$$

Questions: 1. Are the profiles the same as for the Batch (SIR) problem?

2. And what is the effect of the diffusion coefficient C?

B. Spatially variable interactions: USC Viterbi

1-D Contagion Waves

School of Engineering

B. Spatially variable interactions: USC Viterbi Comparison with batch "SIR" model

Effect of diffusion is to slightly lower the equivalent infection rates

B. Spatially variable interactions: USC Viter bi School of Engineering Diffusion dependence

We can explicitly remove the C-dependence by introducing rescaled space coordinates and velocities, $\xi = \sqrt{C}\zeta$ and $V = W\sqrt{C}$.

All equations remain the same, so we can formally take C=1 and derive results

independent of C

$$W = \frac{1}{r_{V,\infty}} \int_{-\infty}^{\infty} \overline{i_1} d\zeta$$
In dimensional form
$$\mathcal{V} = \sqrt{D\Lambda} \frac{1}{r_{V,\infty}} \int_{-\infty}^{\infty} \overline{i_1} d\zeta$$

Wave velocity increases with the square root of $D\Lambda$ and with $R_0(\rho,0)$ Same results hold for radial symmetry geometries Diffusion and reaction lead to translational waves

B. Spatially variable interactions: 1-D Heterogeneity

School of Engineering

Variable density:

 $R_0(\rho, 0)$ = 3, for x \in (-80, -25) and x \in (25, 80); $R_0(\rho, 0)$ = 1.5 for x \in (-25, 25).

Wave velocities and profiles rapidly reach their steady-state values corresponding to the ambient $R_0(\rho, 0)$

B. Spatially variable interactions: 2-D geometries

Effect of 2-D heterogeneity in $R_0(\rho, 0)$: 1. Layered System

 $R_0(\rho, 0) = 2$ in the outer layers, and $R_0(\rho, 0) = 3.5$ in the inner layer.

As in 1-D, wave velocities and profiles rapidly reach their steady-state values corresponding to the ambient $R_0(\rho, 0)$. Connecting wave-fronts are linear.

B. Spatially variable interactions: 2-D geometries

Effect of 2-D heterogeneity in $R_0(\rho, 0)$: 2. 4- Quadrant System

 $R_0(\rho,0)$ = 2 in NW and SE, and $R_0(\rho,0)$ = 3.5 in NE and SW

As in layered system, wave velocities and profiles rapidly reach their steady-state values corresponding to the ambient $R_0(\rho, 0)$. Connecting wave-fronts are linear.

Concluding Remarks

- Understanding of the spreading of epidemics can benefit substantially from reaction-diffusion analogies.
- Important to model in terms of spatial densities.
- Kinetics can naturally incorporate spatial distancing.
- Important variable $R_0(\rho, r)$ is a function of spatial density and process extent
- SIR-like model results as the Batch Reactor equivalent.
- Herd immunity is a function of $R_0(\rho, 0)$. It is a useful concept only when $R_0(\rho, \infty)$ does not change.
- The effect of initial conditions is only relevant as long as it provides time for policies to reduce $R_0(\rho, 0)$.
- Relatively rapid fluctuations in R_0 result into an effective value equal to the mean.
- Diffusion is necessary to initiate propagating infection waves.
- The wave velocity scales with the square root of diffusion coefficient and the inverse recovery time, and increases almost linearly with $R_0(\rho, 0)$.
- In 2-D heterogeneous systems, the wave solutions rapidly approach the asymptotic states corresponding to the ambient $R_0(\rho, 0)$.
- While here restricted to three species, the approach applies to additional species and demographics.