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Abstraci—There are currently intensified efforts by the
scientific community world-wide to analyze the dynamics
of the Covid-19 pandemic in order to predict key epidemi-
ological effects and assist the proper planning for its
clinical management, as well as guide sociopolitical
decision-making regarding proper mitigation measures.
Most efforts follow variants of the established SIR
methodological framework that divides a population into
“Susceptible”, “Infectious” and “Recovered/Removed”
fractions and defines their dynamic inter-relationships with
first-order differential equations. Goal: This paper proposes
a novel approach based on data-guided detection and
concatenation of infection waves — each of them described
by a Riccati equation with adaptively estimated parameters.
Methods: This approach was applied to Covid-19 daily
time-series data of US confirmed cases, resulting in
the decomposition of the epidemic time-course into five
“Riccati modules” representing major infection waves to
date (June 18th). Resulis: Four waves have passed the
time-point of peak infection rate, with the fifth expected
to peak on July 20th. The obtained parameter estimates
indicate gradual reduction of infectivity rate, although the
latest wave is expected to be the largest. Conclusions:
This analysis suggests that, if no new waves of infection
emerge, the Covid-19 epidemic will be controlled in the
US (<5000 new daily cases) by September 26th, and
the maximum of confirmed cases will reach 4,160,000.
Importantly, this approach can be used to detect (via
rigorous statistical methods) the emergence of possible
new waves of infections in the future. Analysis of data from
individual states or countries may quantify the distinct
effects of different mitigation measures.

Index Terms—Adaptive modeling of Covid-19 time-series
data, epidemiological predictive modeling, riccati-based
phase-space modeling, statistical detection of Covid-19 in-
fection waves.

Impact Statement—Analysis of US Covid-19 data yielded
five RMs representing the dynamics of five infection waves.
The further application of this approach could allow inter-
regional comparison of the obtained RM-decompositions.
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l. INTRODUCTION

ANY efforts have been made recently to analyze the
Mtime-course of the Covid-19 pandemic daily data in
various countries or regions and to predict key aspects of its even-
tual growth in order to assist the proper planning for healthcare
resources and related socioeconomic decision-making. Among
them, dominant role is played by the SIR class of compartmental
epidemiological models, introduced about a century ago by
Kermack and McKendrick [1], and its many variants over
the years [2]-[5] that generally utilize compartments of
“Susceptible”, “Infectious” and “Removed” fractions of the
population, which are interconnected with dynamic relation-
ships described by nonlinear ordinary differential equations. An-
other commonly used approach employs linear Auto-Regressive
Integrated Moving-Average (ARIMA) models that have been
popular in econometrics [6]. From the policy-planning point of
view, practical importance is attained by predictive modeling
methods that can provide reliable estimates of key parameters
of the unfolding infectious process at each point in time on an
adaptive basis, as well as offer useful insights into the dynamic
structure of the infectious process. For example, such adaptive
methods can offer useful predictions of the maximum number of
total infections and an upper bound of the daily confirmed new
cases for the purpose of planning the proper clinical management
of the epidemic. Furthermore, the obtained model should be
interpretable in terms of the dynamic characteristics of the epi-
demic process (e.g. infectivity rate etc.) in order to assist policy
planning and operational implementation. From these observa-
tions arise two key aspects of a desirable modeling approach:

1) Suitable model form: The employed model form must
capture the essential dynamic characteristics of the epi-
demic process at each time-point in a manner that is
scientifically interpretable and operationally useful.

2) Robust estimation and adaptive modeling: Robust estima-
tion of the model parameters at each time-point must be
feasible using tested statistical methods in a manner that
can detect possible changes in the underlying modeling
assumptions over time and offer the means for model
adaptation.

If these two key aspects can be secured, then it would be
possible to predict the maximum spread of anticipated infections
and the maximum rate of infections (as well as their respective
timing) in order to assist rational decision-making.

This paper presents one such approach that employs an
adaptive modeling/estimation strategy based on the use of
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concatenated Riccati-type modules (each described by a
parabolic phase-space representation) and suitable adaptive sta-
tistical estimation methods. The potential utility of this approach
is initially demonstrated with the adaptive analysis of daily data
of reported Covid-19 confirmed cases in the US up to the present
time (June 18, 2020).

The extensive literature on the subject of epidemiological
modeling is not reviewed here in the interest of space, but
some basic comparisons of the proposed approach with the
most widely-used SIR class of models will be discussed. Some
representative recent modeling applications to Covid-19 data
that may be of interest to the readers include: a simulation study
of the SEIR model (a variant of the SIR model that includes a
compartment for “Exposed” individuals) for Covid-19 in North-
ern Italy [7], a model that seeks to estimate the transmission risk
of the epidemic [8], and a model for the spread of the epidemic
in China [9]. There are many Covid-related modeling studies
that have been posted as “preprints under review”, thus more
citations will soon be available.

Il. MATERIALS AND METHODS

The key modeling element of the proposed approach is the
“Riccati module” (RM) that is defined by the Riccati Equation
(1) with constant coefficients A and B (defining a quadratic rela-
tion between the rate of change and the number of infections X(z)
at each time) [10]. The additive stochastic term R(f) represents
all unknown random influences (unknown external factors and
errors/noise) affecting the reported time-series data [11]-[15]:

dX(t)/dt = AX(t) — BX?(t) + R(t) (1)

This equation captures the essential self-limiting aspect of an
infectious process (due to the gradually acquired “herd immu-
nity” and countervailing factors) in a relatively simple manner
by considering the “effective rate” (which relates the derivative
to the function) being reduced linearly with rising X(#) as: f[A —
BX(1)], instead of being a constant as in the conventional rate
processes of the form: dX(t)/dt = AX(t).

Thus, the parameter A is the initial “infectivity rate constant”
that is dominant in the initial exponential-like growth of the
infection and quantifies the degree of contagiousness of an
infectious agent along with the level of contagious interactions
in a given “infection pool” (IP). On the other hand, the parameter
B depends on the size of susceptible population in the IP and
also quantifies the degree to which the aforementioned acquired
“herd immunity” and countervailing factors (both natural and
socially or administratively imposed by the infected commu-
nity) constrain the initial rapid growth of the infection and
eventually achieve its control. This process is described by a
sigmoidal curve defined by Equation (2), which is the general
solution of the Riccati Equation (1) (in the absence of random
perturbations R(t)), where the maximum number X .. of total
infections anticipated by the Riccati model (i.e. the plateau of
the sigmoidal curve) is given by the ratio of the two parameters

X max = (A/B):

X (t) = Xmax/ [1 + K exp (—At)] )

where K = [( X ax/Xin) — 1], with X;,, being the initial value
of X(#) at the start of the respective RM single-pool infection.
The two parameters, A and B, of each RM attain useful interpre-
tations that offer insights into the dynamic characteristics of the
infectious process, which is generally decomposed into a cas-
cade of RMs estimated via the proposed adaptive methodology
and representing the ongoing “recruitment” of distinct/major
IPs. This model-derived knowledge may assist the effective
management of an epidemic describable by a model composed
of such concatenated (latent) RMs.

Itis clearly desirable to obtain reliable “running” estimates of
these parameters from time-series data (e.g. daily Covid-19 data)
at any given point in time. The Riccati-equation model has been
shown previously to represent self-limiting infectious processes
that are confined within single isolated *“infection pools” (IPs)
[11]-[15]. The challenge in the study of the Covid-19 epidemic
is that, due to its highly contagious nature, there are multiple
communicating IPs that are recruited during the course of the
epidemic and contribute to the reported data at the respective na-
tional, international or multi-community level. This presents us
with the daunting task of separating the superimposed sigmoidal
time-courses of multiple RMs corresponding to the various IPs
(without the benefit of separate data from individual IPs). To
perform this task, we propose a methodology that utilizes an
adaptive estimation procedure to detect (via a “running” statis-
tical Hypothesis test) and separate the concatenated parabolic
phase-space representations of the RMs that are present in the
data up to a given time-point.

The phase-space representation of a dynamic process X()
pertains to the relation between X(f) and its derivative over time
(in the absence of random perturbations). The Riccati Equation
(1) indicates that this relation is parabolic. For discrete-time data
(i.e. Covid-19 confirmed cases) up to time-step n, a cascade of
parabolic phase-plots can be fitted to the available phase-space
data, and estimates of all the parameters A and B at each time-
step n can be obtained. These parameter estimates can be used to
predict the multi-sigmoidal time-course of the infectious process
according to a superposition of cascaded sigmoidal curves,
each described by Equation (2) with its distinct parameters.
This estimation task begins with the statistical detection and
estimation of the first RM that is described by the discretized
Riccati-model:

AX (n) /AT = AX (n) — BX%?(n)+R(n) (3)

where: AX(n) = [X(n) — X(n — 1)], and AT denotes the fixed
time-step (1 day in this case). Following adaptive estimation
of the first RM (see below), we perform statistical Hypothesis
testing (using a properly constructed F-statistic) at each time-
step to detect the possible emergence of another RM and, if
such is detected, then estimate the distinct parameters of the two
RMs and separate the contributions to the total reported cases
(see below). This procedure is repeated at each time-step 2 until
all daily data have been analyzed to obtain adaptive estimates
of the distinct RM parameters A and B that correspond to all
detected RMs.

Regarding the robust estimation of the parameters A and
B, initial analysis indicated that the standard deviation of the
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residual values R(n) depends roughly linearly on X(n). This non-
stationary residual variance implies that least-squares fitting of
the model of Equation (3) would yield unreliable parameter
estimates. However, reliable estimates of A and B may be
obtained via least-squares regression of the “Normalized Rate of
Change™: AX(n)/X(n), (equivalent to the logarithmic derivative)
upon X(n) according to the equation:

AX(n)/X(n)=A-BX(n)+R(n)/X(n) @
when AT in Equation (4) is set to 1 (one day). Since the residual
term: R(n)/X(n), is expected to have (approximately) stationary
standard deviation, reliable parameter estimates can be obtained
at each time-step n. Furthermore, the “slope parameter” B in
Equation (4) can be evaluated for statistical significance at
each time-step n (by testing the Null Hypothesis that the slope
parameter is not significantly different from zero at a specified
confidence level) to assess whether Equation (4) remains an
appropriate representation of the data. When this Null Hypoth-
esis gets rejected at some time-step n, then adaptive parameter
estimates can begin to be used for adaptive prediction of the
sigmoidal course of the infection accounted by the respective
RM.

This adaptive estimation procedure can be repeated at each
time-point n, until the linear relationship expressed by Equation
(4) ceases to represent the time-evolution of the data — an event
identified adaptively by examining the statistical significance
of the reduction in Residual Variance (using Hypothesis testing
with an F-statistic) of the regression of the “Normalized Rate
of Change” values: [AX(n)/X(n)] upon the linear relationship
of Equation (4) versus a second-degree polynomial expression
that would indicate the emergence of a new RM. Note that a
second-degree polynomial expression like the one in Equation
(5) (starting with a positive value at X = 0, since A must be
positive) may not have a zero-crossing in the phase-plot of the
“Normalized Rate of Change”, but this is not necessary because
it simply quantifies the divergence from the Null Hypothesis
(as an Alternative Hypothesis) and does not seek to represent
the dynamic characterisitcs of the infectious process. Thus,
we construct an adaptive statistical test using the Alternative
Hypothesis that the Normalized Rate of Change follows the
quadratic model of Equation (5):

AX (n)/X(n)=A—-BX (n)

~CX*(n)+R(n)/X(n) (5

to be tested at each time-point against the Null Hypothesis of
the linear model of Equation (4). For this statistical Hypothesis
testing, we use the following F-statistic (with 1 and (N-3) degrees
of freedom) that represents the normalized reduction in Residual
Variance between the linear and the quadratic expressions (4)
and (5):

Fin3=(N-3)Q/(Q:

where @qand Qzdenote the computed Residual Variances for
the linear and the quadratic expression, respectively, and N is
the number of data-points used in the regression.

(6)
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TABLE |
ESTIMATED PARAMETERS OF THE RM MODEL COMPOMNENTS
Parameter | RM#1 | RM#2 | RM#3 | RM#4 | RM #5
A 0.39 0.25 0.12 0.08 0.05
BxI0° 5.6 0.65 0.14 0.13 0.02
K 480 710 280 530 760
Xonax x 10° 70 380 820 610 2,280
PIR x 1(F 6.8 23.7 24.6 12.2 28.5
Trir 16 26 47 78 132
Tiger 8 15 23 37 60

The computed F'; 3 is compared at each time-point to the
proper critical value F..;; (for a significance level of 95%).
When F'y y_3 > F,.;, the Null Hypothesis is rejected (at 95%
confidence level) and a new RM is deemed to be emerging
and included in the model by separating its contributions (and
parameters) from those of all other previous RMs. The contri-
butions of all concatenated RM model components are included
in the total model prediction. The application of this approach is
demonstrated in the following section using daily reported data
of Covid-19 confirmed cases in the US from March 11 until June
18 (the completion date of this manuscript), while the epidemic
is still ongoing.

lll. RESULTS

‘We analyzed the publicly reported data of daily new Covid-19
confirmed cases in the US (database curated by Johns Hopkins
University) and the cumulative number of confirmed cases since
March 11th 2020 (the day the cumulative cases first exceeded
1000 in the US) until June 18th 2020 (the completion date of this
manuscript), a period that covers a total of 100 days. Application
of the aforementioned methodology identified five latent Riccati
modules (RM) with distinct parameters A and B that are given
in Table I, along with the parameters K of Equation (2) and the
respective predictions of the maximum number of anticipated
cumulative cases due to each RM model component. Some other
key parameters of the five component RMs (e.g. the size and
timing of the peak infection rate for each RM) are also reported
in Table L. The timing of the peak infection rate (PIR) for each
RM is given by the expression:

TPIRZETL(K)/A (7]
and the corresponding PIR is determined by A and B as:
PIR = A%/ (4B) (8)

Equation (8) indicates the strong dependence of PIR on
A. Since the PIR value is critical for planning the clinical
management of the pandemic (lest the finite resources of the
healthcare system be temporarily overwhelmed). Equation (8)
underlines the importance of minimizing (i.e. controlling) A for
agiven IPsize X ,,x = A/B. All these parameter estimates are
given in Table I for the five RMs, along with the time of their
earliest detection T'y.; by the proposed algorithm. The units of
these parameter values are the following: A (days '), B (days '
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RM-model decomposition of cumulative confirmed cases in the US
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Fig. 1. Cumulative confirmed cases in the US from March 11th to

present time of June 18th (blue with circles) and total concatenated-RM
model prediction (red), along with the predictions of the five RM com-
ponents (green-dashed, blue-dotted, purple-dot-dashed, brown-dotted,
and black-dashed).

cases” '), K (unitless), X ax (cases), PIR (cases/day), Tprr
and T ;. (days since March 11th 2020).

The declining values of the estimated parameters A for the five
RMs indicate that there is gradual reduction of the infectivity
rate, which may be partially due to the effect of the imposed
social-distancing and other mitigation measures (see Discus-
sion). These parameter values are updated on a daily basis but
were shown to be rather stable away from the days of intro-
duction of new RMs. The estimated parameters B for the five
RMs depend inversely on the size of the susceptible and exposed
population in the respective “infection pool” in combination
with the effect of mitigation measures (see Discussion). This
is consistent with the model-predicted maximum numbers of
confirmed cases for the five RMs. The total maximum number
of cumulative confirmed cases that is predicted by these five
RM components of the model is: 4,160,000 (substantially higher
than the current cumulative total of 2,191,100 cases). Of course,
this prediction is contingent upon the assumption that no new
infection waves will occur and be detected by the algorithm in
the future. In connection with this assumption, we note that the
F-statistic is rising recently and is approaching the critical value
that may trigger the detection of a new emergent infection wave.

Fig. 1 shows the cumulative number of confirmed cases in the
US since March 11th 2020 along with the total model prediction
and the predictions of the five RM components. The depicted
RM-decomposition of the time-course of the cumulative number
of confirmed cases offers useful insight into the time-course of
the epidemic unfolding over five major IPs (defined as the source
of statistically significant RMs) in the US between March 11th
and the present time (June 18th). Consistent with the estimates
shown in Table I, Fig. 1 indicates that the last RM model
component is expected to make the largest contribution to the
total number of confirmed cases, relative to the previous four
RMs (see Discussion).

The analysis of the daily new confirmed cases offers an
informative RM-decomposition that is shown in Fig. 2, along
with the actual time-series data and the total model prediction.
This result demonstrates the ability of the proposed approach to

RM-model decomposition of new daily confirmed cases in the US

8 8 &

- e BB
5 @ 8 a

o

New daily confirmed cases (in thousands)

% 20 0 60 80 00
Days since March 11th

Fig. 2. New daily confirmed cases in the US from March 11th to
present time of June 18th (blue with circles) and the total concatenated-
RM model prediction (red), along with the predictions of the five RM
components (green-dashed, blue-dotted, purple-dot-dashed, brown-
dotted, and black-dashed).

model multi-modal patterns of dynamic changes in the infectious
process due to merging of distinct infection pools — unlike
the unimodal patterns of the widely used SIR models. This
also allows the timely detection of emerging distinct waves of
infection (see Discussion).

The number of daily new confirmed cases due to each RM is
given by the expression:

AX (n) = A2K exp (—An) /{B[1 + K exp (—An)]*}

9
that exhibits a single peak at the PIR time-point T prp (see
Equations (7) and (8)), which corresponds to the inflection point
of the respective sigmoidal curve and is half-way to the level
of the sigmoidal plateau (i.e. foretells the maximum value of
cumulative cases to be reached by each RM).

It is evident in Fig. 2 that the first four RMs have passed their
PIR time-points (see Table I). The last RM is expected to reach
its PIR time-point on Day 132 (i.e. on July 20th). This RM-based
model predicts that, unless anew IPis recruited in the near future,
the Covid-19 infection in the US will dip below 5,000 new daily
confirmed cases on Day 194 (i.e. on September 20th), as marked
with an arrow in Fig. 3 that shows the simulated prediction of
the five RM model components over the next 100 days (until
September 26th). It is evident in Fig. 3 that the infection wave
of the last RM is expected to be larger than the combined total
of the other four RMs (see Discussion).

The forward prediction of the RM-based model for the cu-
mulative confirmed cases in the US over the next 100 days
(provided that no new infection wave emerges) is shown in Fig. 4
and illustrates the dominant contribution of the last infection
wave that has not yet reached its inflection point (T pr ) that is
expected in 32 days (i.e. on July 20th).

A cyclical ripple is evident in the actual data of daily con-
firmed cases in Fig. 3 that is not accounted by the RM-based
model. Itis probably due to time-varying influences related to the
weekly cycle of social life. The RM-based model is not expected
to account for such time-varying influences, although the use
of the fundamental Riccati Equation (1) can be extended in
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Forward prediction of RM model for daily confirmed cases in the US
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Fig. 3. Forward prediction of the RM-based model for the new daily
confirmed cases in the US over the next 100 days (to September 26th)
made on June 18th (red line), along with the actual time-series data
to date (blue with circles) and the predictions of the five RM com-
ponents (green-dashed, blue-dotted, purple-dot-dashed, brown-dotted,
and black-dashed).

Forward prediction of RM model for cumulative cases in the US

ses (in thousands)

med
]
8

cc-ggg

Cumulative confir

e
100 150 200
Days since March 11th

Fig. 4. Forward prediction of the RM-based model for the cumula-
tive confirmed cases in the US over the next 100 days (to Septem-
ber 26th) made on June 18th (red line), along with the actual data
to date (blue with circles) and the predictions of the five RM com-
ponents (green-dashed, blue-dotted, purple-dot-dashed, brown-dotted,
and black-dashed).

future work to time-varying coefficients A in order to account for
these weekly variations. To examine the dominant frequencies
of these variations, Fig. 5 shows the frequency spectrum of the
residuals of the RM model prediction for the daily confirmed
cases that clearly depicts a 7-day spectral peak (located at
0.143 cycles/day).

Finally, since some take the view that simple curve-fitting
of the cumulative cases data to a sigmoidal expression may
be adequate, we examine whether a direct least-squares fitting
of the sigmoidal expression of Equation (2) to the time-series
data of cumulative confirmed cases may be able to yield a
reasonable approximation of the time-course of the data. The
result is shown in Fig. 6 and demonstrates the inferiority of
simple curve-fitting, both in terms of approximation accuracy
(by comparing with the RM-model approximation in Fig. 1)
and in terms of misleading parameter estimates: low infectivity
rate estimate of A;, = 0.065 and low prediction of maximum
number of confirmed cases: 2,120,000.

Spectrum of residuals of RM-model prediction

150
\ 7-day
spectral peak
100+
50+ i

% 100 200 300 400 500
Millicycles / day

Fig. 5. The frequency spectrum of the residuals of the RM model
prediction for the new daily confirmed cases in the US that depicts a
7-day spectral peak at 143 millicycles/day.

Direct least-squares fit of cumulative cases with sigmoidal curve
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Fig. 6. Direct least-squares fit (red line) of the cumulative cases of
confirmed Covid-19 patients in the US from March 11th to June 18th
(blue line with circles). The results are inferior to their counterparts from
the proposed RM-based modeling methodology that are shown in Fig. 1.
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Fig.7. Directleast-squares fit (red line) of the daily cases of confirmed
Covid-19 patients in the US from March 11th to June 18th (blue line with
circles). The results are inferior to their counterparts from the proposed
RM-based modeling methodology that are shown in Fig. 2.

For the data of daily confirmed cases, the direct least-squares
approximation is shown in Fig. 7 and demonstrates the inferi-
ority of curve-fitting in terms of approximation accuracy (by
comparing with the RM-model approximation in Fig. 2) and the
fundamental inability of direct sigmoidal fitting to approximate
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multi-modal phase-plots that can detect the emergence of new
major infection waves.

IV. DiscussiON & CONCLUSION

A novel adaptive methodology for predictive modeling of the
time-course of daily and cumulative confirmed cases of Covid-
19 has been presented and its application to the reported data
for the US has been demonstrated. This methodology achieves
the decomposition of the time-course of the Covid-19 data in
terms of concatenated “Riccati Modules” (RM) and provides
potentially useful predictions as well as valuable insights into
the dynamic characteristics of the infectious process.

Specifically, the advocated approach detects the presence of
multiple overlapping “infection waves™ that correspond to major
“infection pools™ (IP) described by distinct and concatenated
RMs that are defined by the fundamental Riccati Equation (1) —
each with distinct parameters A and B that quantify the critical
dynamic aspects of the infectious time-course in the respec-
tive IP. The parameter A is the “infectivity rate constant” that
determines the initial exponential-like growth of the infection
and depends on the degree of contagiousness and the level of
contagious interactions in a given IP. In this sense, it is akin
to the “reproduction rate” of the conventional SIR models. The
parameter B depends on the size of the susceptible and exposed
population in each IP and also quantifies the degree to which
the gradually acquired “herd immunity” and mitigating fac-
tors/measures constrain the initial rapid growth of the infection
and eventually achieve its control according to the sigmoidal
time-course defined by Equation (2) reaching at its plateau the
maximum number of infections: X ;. = (A/B).

To achieve this RM-decomposition of the time-series data,
the proposed approach employs regression analysis in phase-
space and statistical Hypothesis testing using an F-statistic (see
Methods) to detect the emergence of new infection waves at
a specified level of statistical significance. Running (adaptive)
estimates of the RM parameters are obtained at each time-point.
They were found to be rather stable away from the points where
new RMs are introduced into the model.

Analysis of Covid-19 daily data in the US from March 11th
to June 18th (when this manuscript was completed) yielded five
RMs that are concatenated as shown in Figs. 1 and 2. They
are deemed to represent the distinct dynamics of five infection
waves in major IPs that have the characteristics defined by
their respective parameters given in Table 1. The small initial
RM-1 (possibly corresponding to the initial infection in the
Seattle area) is followed by the larger RM-2 and RM-3 (pos-
sibly corresponding to the rapid urban surge in New York City
and subsequently in other US urban centers and the Northeast,
respectively). The broader epidemic spread across smaller towns
and rural areas in the US, under local mitigation measures, may
correspond to RM-4 (slower growth and moderate size). The
emergence of the last and largest infection wave (described
by RM-5) was detected by the proposed algorithm on Day
60 (May 9th) and appears to coincide with the relaxation of
some mitigation measures across the US. The total number
of infections anticipated by the model is 4,160,000 (about

TABLE Il
UNITS FOR MAGNETIC PROPERTIES

Conversion from Gaussian and

Symbol Quantity CGS EMU to SI *
@ magnetic flux 1 Mx = 10" Wb=10"V-s
B magnetic flux density, 1G— 104 T=10"* Wh/m?
magnetic induction
H magnetic field strength 1 Oe — 10%/(4n) A/m
m magnetic moment 1 erg/G=1emu
=107 Am =107 )T
M magnetization 1 erg/(G-em®) = | emu/cm?
— 10° A/m
4nM magnetization 1 G — 10°/(4m) A/m
s specific magnetization 1 erg/(G-g) = 1 emu/g — 1 A-m*/kg
j magnetic dipole 1 erg/G=1emu
moment —4rx 107" Wb-m
J magnetic polarization 1 erg/(G-em®) = | emu/cm?
—4nx 107'T
% K susceptibility 1 —4n
%o mass susceptibility 1 em’/g — 4 x 107 m/kg
mn permeability 1 > 4nx 107 H/m
=4mx 1077 Wh/(A-m)
L relative permeability n— U
w, W cnergy density 1 erg/lem’ — 107! J/m?
N, D demagnetizing factor 1 — 1/(4m)

Vertical lines are optional in tables, Statements that serve as captions for the entire table do
not need footnote letters.

“Gaussian units are the same as cg emu for magnetostatics: Mx = maxwell, G = gauss,

Oe = ocersted; Wb = weber, V = volt, s = second, T = tesla, m = meter, A = ampere, ]
= joule, kg = kilogram, H = henry.

double the current cumulative number), provided that there
will be no new RM added to the model because of Covid-19
spreading into a new IP or caused by significant change in the
current mitigation measures. Under the same key assumptions,
the current model predicts that the number of new confirmed
cases in the US will drop below 5,000 by September 20th (see
Fig. 3).

The results shown in Table I and Fig. 2 indicate an early
rapid reduction of the parameter A in successive RMs, which
plays a key role in determining the critical “stressor” of the
healthcare system, the Peak Infection Rate: PIR = A%/(4B),
provided that the parameter B is not drastically reduced. The last
RM anticipates its PIR to occur in 32 days (July 20th) without
exceeding the previous peaks of RM-1 and RM-2. It is worth
noting that the time between detection of a new infection wave
and its PIR increases with decreasing A.

Analysis of the daily confirmed cases shows the individual
contributions of the five RM components (see Fig. 2) and
demonstrates the versatility of the proposed approach to detect in
a statistically rigorous manner new emerging waves of infection
and be applicable to cases where the pattern of daily changes
is not unimodal. This constitutes an important advantage of
the proposed approach over the widely used SIR models and
other unimodal approaches. Another difference of the proposed
approach from the popular SIR model is that it does not take into
account the number of recovered cases and does not require full
immunity of the latter. To further explore this comparison, the
three equations of the classic SIR model can be combined in a
single nonlinear differential equation that takes the second-order
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form:
d*Q/dt? + k dQ/dt = sob exp [-b Q (t)]

where Q(t) is the integral from 0 to ¢ of the infected fraction of
the population, k is the recovery rate, b is the infection rate and
sois the initial size of the susceptible population. Equation (10)
indicates that the estimation of the unknown parameter b must
rely on iterative methods (which are far less robust and reliable
than regression utilized by the proposed approach) and that this
differential equation has only one stable equilibrium point when
Q(t) tends to infinity (a less flexible notion than the multiple finite
stable equilibrium points of the concatenated Riccati Equations
that are achieved by each RM when each reaches its individual
plateau for the respective X ,.x = A/B). These comparisons
must be explored further in the future.

Regarding the cyclical variations that are evident in the time-
series data of daily confirmed cases, but not accounted by the
RM-based model (see Fig. 3), it is noted that the fundamental
Riccati Equation (1) can be extended in future work to time-
varying coefficients that may account for the observed 7-day
cycle revealed in the spectrum of the residuals of the model
prediction (see Fig. 5). The 7-day cycle peaks at the end of each
week and may be due to increased social interactions during the
previous weekend (noting the average Covid incubation period
of 5 days).

It must be emphasized that the RM-based predictive modeling
is distinct from simple curve-fitting methods. This was demon-
strated above by contrasting with the results of direct sigmoidal
least-squares fitting (see Figs. 6 and 7) and showing that the latter
may lead to serious mis-estimation of the key parameters of the
infectious process (e.g. much smaller infectivity rate estimate
and smaller predicted maximum number of confirmed cases) —
in addition to misconceptions regarding the dynamic structure
of the process (i.e. unimodal versus multi-modal phase-space
representation).

An interesting question arises with respect to the effect of
changing testing rates upon the obtained parameter estimates.
If the “true” incidence is ¥(f), then the “apparent” incidence
due to a time-varying “testing rate function™ f{z) is: X(1) =
J)Y(t). It can be shown that the “true” parameters A* and B*
(corresponding to the unknown ¥(#) values) are related to the
“apparent” parameter estimates A and B (obtained from the
available X(¢#) data) according to the expressions: A = A* +
L’ @/ft), and B = B*/ f(t), where f’(t) = df(t)/dt. Since f{(t)
ought to be positive and <1 for all times, then B is always an
overestimation of B*, and A overestimates A* only when the
testing rate is increasing (f’(¢) >0). For a constant testing rate,
A = A", For the estimated maximum number of cases, we have
the relation: X jnax = Y max [f(t) + f1(t) / A*].

This work (like others on Covid-19 predictive modeling) is
published under unique and unprecedented circumstances of an

(10)

ongoing pandemic, which render its validation open to the future
data that are publicly reported. The predictions made in this
paper will hold only if no new wave of infections occurs.

The proposed approach can be applied in the near future to
additional Covid-19 data from other countries or from vari-
ous regions of the US in order to compare the obtained RM-
decompositions (revealing the dynamic structure of infection
waves in these infectious processes) and the associated pa-
rameter estimates A and B of each RM. The distinct RM-
decompositions for various countries/regions and the respective
parameter estimates may reveal valuable correlations with the
mitigation policies followed in each case to examine their ef-
fectiveness within each specific socio-cultural context in order
to guide future decision making by examining how much the
respective policies or socio-cultural conditions influence the es-
timated parameters A and B — and consequently X ,,,,, = A/B
or PIR = A?/(4B).
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